首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5534篇
  免费   465篇
  国内免费   1篇
  6000篇
  2023年   20篇
  2022年   55篇
  2021年   113篇
  2020年   66篇
  2019年   88篇
  2018年   82篇
  2017年   82篇
  2016年   145篇
  2015年   271篇
  2014年   282篇
  2013年   360篇
  2012年   468篇
  2011年   434篇
  2010年   304篇
  2009年   218篇
  2008年   375篇
  2007年   342篇
  2006年   309篇
  2005年   293篇
  2004年   290篇
  2003年   280篇
  2002年   227篇
  2001年   66篇
  2000年   51篇
  1999年   56篇
  1998年   55篇
  1997年   50篇
  1996年   56篇
  1995年   39篇
  1994年   27篇
  1993年   34篇
  1992年   40篇
  1991年   24篇
  1990年   16篇
  1989年   15篇
  1988年   13篇
  1987年   16篇
  1986年   14篇
  1985年   23篇
  1984年   28篇
  1983年   19篇
  1982年   14篇
  1981年   15篇
  1979年   14篇
  1978年   16篇
  1977年   15篇
  1973年   12篇
  1971年   14篇
  1967年   11篇
  1966年   12篇
排序方式: 共有6000条查询结果,搜索用时 15 毫秒
91.
The pygmy hog, Sus salvanius, the smallest and rarest extant suid was first described as the only member of the genus Porcula. It is currently regarded as member of the genus Sus and a sister taxon of the domestic pig/Eurasian wild boar (Sus scrofa). Phylogenetic analyses of 2316 bp from three mtDNA loci (control-region, cytochrome b, 16S) by Bayesian inference and statistical testing of alternative phylogenetic hypotheses all support the original classification of the pygmy hog as a unique genus. Thus, we propose that the species name Porcula salvania should be resurrected. The reclassification will heighten awareness of the need for the future protection and survival of this unique species.  相似文献   
92.
There is a need for reliable and sensitive biomarkers for renal impairments to detect early signs of kidney toxicity and to monitor progression of disease. Here, antibody suspension bead arrays were applied to profile plasma samples from patients with four types of kidney disorders: glomerulonephritis, diabetic nephropathy, obstructive uropathy, and analgesic abuse. In total, 200 clinical renal-associated cases and control plasma samples from different cohorts were profiled. Parallel plasma protein profiles were obtained using biotinylated and nonfractionated samples and a selected set of 94 proteins targeted by 129 antigen-purified polyclonal antibodies. Out of the analyzed target proteins, human fibulin-1 was detected at significantly higher levels in the glomerulonephritis patient group compared to the controls and with elevated levels in patient samples for all other renal disorders investigated. Two polyclonal antibodies and one monoclonal antibody directed toward separate, nonoverlapping epitopes showed the same trend in the discovery cohorts. A technical verification using Western blot analysis of selected patient plasma confirmed the trends toward higher abundance of the target protein in disease samples. Furthermore, a verification study was carried out in the context of glomerulonephritis using an independent case and control cohort, and this confirmed the results from the discovery cohort, suggesting that plasma levels of fibulin-1 could serve as a potential indicator to monitor kidney malfunction or kidney damage.  相似文献   
93.
The innate immune system provides the host with an immediate and rapid defense against invading microbes. Detection of foreign invaders is mediated by a class of receptors that are known as the pattern recognition receptors, such as the family of Toll-like receptors (TLRs). In humans, ten functional TLRs have been identified and they respond to conserved pathogen-associated molecular patterns derived from bacteria, mycoplasma, fungi and viruses. TLR activation leads to direct antimicrobial activity against both intracellular and extracellular bacteria, and induces an antiviral gene program. Recently, it was reported that TLR2 activation leads to the use of vitamin D3 as a mechanism to combat Mycobacterium tuberculosis. Here, we focus on recent findings concerning the TLR-induced antimicrobial mechanisms in humans and the therapeutic implications of these findings. Owing to their capability to combat a wide array of pathogens, TLRs are attractive therapeutic targets. However, additional knowledge about their antimicrobial mechanisms is needed.  相似文献   
94.
95.
N-Acetylmannosamine (ManNAc) is the physiological precursors to all sialic acids that occur in nature. As variations in the sialic acid decoration of cell surfaces can profoundly affect cell-cell, pathogen-cell, or drug-cell interactions, the enzymes that convert ManNAc into sialic acid are attractive targets for the development of drugs that specifically interrupt sialic acid biosynthesis or lead to modified sialic acids on the surface of cells. The first step in the enzymatic conversion of ManNAc into sialic acid is phosphorylation, yielding N-acetylmannosamine-6-phosphate. The enzyme that catalyzes this conversion is the N-acetylmannosamine kinase (ManNAc kinase) as part of the bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Here, we employed saturation transfer difference (STD) NMR experiments to study the binding of ManNAc and related ligands to the ManNAc kinase. It is shown that the configuration of C1 and C4 of ManNAc is crucial for binding to the enzyme, whereas the C2 position not only accepts variations in the attached N-acyl side chain but also tolerates inversion of configuration. Our experiments also show that ManNAc kinase maintains its functionality, even in the absence of Mg(2+). From the analysis of the STD NMR-derived binding epitopes, it is concluded that the binding mode of the N-acylmannosamines critically depends on the N-acyl side chain. In conjunction with the relative binding affinities of the ligands obtained from STD NMR titrations, it is possible to derive a structure-binding affinity relationship. This provides a cornerstone for the rational design of drugs for novel therapeutic applications by altering the sialic acid decorations of cell walls.  相似文献   
96.
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.  相似文献   
97.
Bile acids are synthesized from cholesterol in the liver and are excreted into bile via the hepatocyte canalicular bile salt export pump. After their passage into the intestine, bile acids are reabsorbed in the ileum by sodium-dependent uptake across the apical membrane of enterocytes. At the basolateral domain of ileal enterocytes, bile acids are extruded into portal blood by the heterodimeric organic solute transporter OSTalpha/OSTbeta. Although the transport function of OSTalpha/OSTbeta has been characterized, little is known about the regulation of its expression. We show here that human OSTalpha/OSTbeta expression is induced by bile acids through ligand-dependent transactivation of both OST genes by the nuclear bile acid receptor/farnesoid X receptor (FXR). FXR agonists induced endogenous mRNA levels of OSTalpha and OSTbeta in cultured cells, an effect that was not discernible upon inhibition of FXR expression by small interfering RNAs. Furthermore, OST mRNAs were induced in human ileal biopsies exposed to the bile acid chenodeoxycholic acid. Reporter constructs containing OSTalpha or OSTbeta promoters were transactivated by FXR in the presence of its ligand. Two functional FXR binding motifs were identified in the OSTalpha gene and one in the OSTbeta gene. Targeted mutation of these elements led to reduced inducibility of both OST promoters by FXR. In conclusion, the genes encoding the human OSTalpha/OSTbeta complex are induced by bile acids and FXR. By coordinated control of OSTalpha/OSTbeta expression, bile acids may adjust the rate of their own efflux from enterocytes in response to changes in intracellular bile acid levels.  相似文献   
98.
We have employed a novel in vivo approach to study the structure and function of the eukaryotic kinetochore multiprotein complex. RNA interference (RNAi) was used to block the synthesis of centromere protein A (CENP-A) and Clip-170 in human cells. By coexpression, homologous kinetochore proteins from Saccharomyces cerevisiae were then tested for the ability to complement the RNAi-induced phenotypes. Cse4p, the budding yeast CENP-A homolog, was specifically incorporated into kinetochore nucleosomes and was able to complement RNAi-induced cell cycle arrest in CENP-A-depleted human cells. Thus, Cse4p can structurally and functionally substitute for CENP-A, strongly suggesting that the basic features of centromeric chromatin are conserved between yeast and mammals. Bik1p, the budding yeast homolog of human CLIP-170, also specifically localized to kinetochores during mitosis, but Bik1p did not rescue CLIP-170 depletion-induced cell cycle arrest. Generally, the newly developed in vivo complementation assay provides a powerful new tool for studying the function and evolutionary conservation of multiprotein complexes from yeast to humans.  相似文献   
99.
Autism spectrum disorders (ASD) and schizophrenia are neurodevelopmental disorders for which recent evidence indicates an important etiologic role for rare copy number variants (CNVs) and suggests common genetic mechanisms. We performed cytogenomic array analysis in a discovery sample of patients with neurodevelopmental disorders referred for clinical testing. We detected a recurrent 1.4 Mb deletion at 17q12, which harbors HNF1B, the gene responsible for renal cysts and diabetes syndrome (RCAD), in 18/15,749 patients, including several with ASD, but 0/4,519 controls. We identified additional shared phenotypic features among nine patients available for clinical assessment, including macrocephaly, characteristic facial features, renal anomalies, and neurocognitive impairments. In a large follow-up sample, the same deletion was identified in 2/1,182 ASD/neurocognitive impairment and in 4/6,340 schizophrenia patients, but in 0/47,929 controls (corrected p = 7.37 × 10−5). These data demonstrate that deletion 17q12 is a recurrent, pathogenic CNV that confers a very high risk for ASD and schizophrenia and show that one or more of the 15 genes in the deleted interval is dosage sensitive and essential for normal brain development and function. In addition, the phenotypic features of patients with this CNV are consistent with a contiguous gene syndrome that extends beyond RCAD, which is caused by HNF1B mutations only.  相似文献   
100.
The human gastrointestinal tract microbiota, despite its key roles in health and disease, remains a diverse, variable and poorly understood entity. Current surveys reveal a multitude of undefined bacterial taxa and a low diversity of methanogenic archaea. In an analysis of the microbiota in colonic mucosal biopsies from patients with inflammatory bowel disease we found 16S rDNA sequences representing a phylogenetically rich diversity of halophilic archaea from the Halobacteriaceae (haloarchaea), including novel phylotypes. As the human colon is not considered a salty environment and haloarchaea are described as extreme halophiles, we evaluated and further discarded the possibility that these sequences originated from pre‐colonoscopy saline lavage solutions. Furthermore, aerobic enrichment cultures prepared from a patient biopsy at low salinity (2.5% NaCl) yielded haloarchaeal sequence types. Microscopic observation after fluorescence in situ hybridization provided evidence of the presence of viable archaeal cells in these cultures. These results prove the survival of haloarchaea in the digestive system and suggest that they may be members of the mucosal microbiota, even if present in low numbers in comparison with methanogenic archaea. Investigation of a potential physiological basis of this association may lead to new insights into gastrointestinal health and disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号