首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5258篇
  免费   426篇
  国内免费   1篇
  2023年   19篇
  2022年   52篇
  2021年   109篇
  2020年   64篇
  2019年   85篇
  2018年   80篇
  2017年   81篇
  2016年   143篇
  2015年   267篇
  2014年   277篇
  2013年   356篇
  2012年   460篇
  2011年   423篇
  2010年   300篇
  2009年   212篇
  2008年   363篇
  2007年   324篇
  2006年   303篇
  2005年   287篇
  2004年   283篇
  2003年   271篇
  2002年   221篇
  2001年   58篇
  2000年   46篇
  1999年   46篇
  1998年   51篇
  1997年   45篇
  1996年   47篇
  1995年   34篇
  1994年   24篇
  1993年   31篇
  1992年   31篇
  1991年   21篇
  1990年   11篇
  1989年   13篇
  1987年   12篇
  1986年   10篇
  1985年   14篇
  1984年   18篇
  1983年   12篇
  1982年   13篇
  1981年   12篇
  1979年   8篇
  1978年   14篇
  1977年   11篇
  1973年   8篇
  1972年   8篇
  1971年   7篇
  1968年   7篇
  1880年   8篇
排序方式: 共有5685条查询结果,搜索用时 31 毫秒
951.
Amrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution. Stopped-flow studies of myofibrils, heavy meromyosin and myosin subfragment 1, showed that the effects on sliding speed were not because of a reduced rate of ATP-induced actomyosin dissociation because the rate of this process was increased by amrinone. Moreover, optical tweezers studies could not detect any amrinone-induced changes in the working stroke length. In contrast, the ADP affinity of acto-heavy meromyosin was increased about 2-fold by 1 mm amrinone. Similar effects were not observed for acto-subfragment 1. Together with the other findings, this suggests that the amrinone-induced reduction in sliding velocity is attributed to inhibition of a strain-dependent ADP release step. Modeling results show that such an effect may account for the amrinone-induced changes of the force-velocity relationship. The data emphasize the importance of the rate of a strain-dependent ADP release step in influencing the maximum sliding velocity in fast skeletal muscle. The data also lead us to discuss the possible importance of cooperative interactions between the two myosin heads in muscle contraction.Muscle contraction, as well as several other aspects of cell motility, results from cyclic interactions between myosin II motors and actin filaments. These force-generating interactions are driven by the hydrolysis of ATP at the myosin active site as outlined in Scheme 1 (13). In the absence of actin, the Pi and ADP release steps (k4 and k5) are rate-limiting for the entire cycle at high (>12 °C) and low temperatures, respectively (46). In the presence of actin, the rate of Pi release increases significantly, and the overall cycle is accelerated more than 2 orders of magnitude. The sliding velocity of myosin-propelled motors is generally believed to be rate-limited by actomyosin dissociation (rate constant k5, k6, or k2 in Scheme 1) (7). Alternatively, some studies (8, 9) have suggested that the sliding velocity is determined by the fraction of myosin heads in the weak-binding states, AM4 ATP and AM ADP Pi. However, it is worth emphasizing that KT is very low under physiological conditions (1, 3) with low population of these states. For the same reason, the rate of dissociation of the AM complex is governed by K1 and k2.Open in a separate windowSCHEME 1.Simplified kinetics scheme for MgATP turnover by myosin (lower row) and actomyosin (upper row). Inorganic phosphate is denoted by Pi; MgATP is denoted by ATP, and MgADP is denoted by ADP; myosin is denoted by M. The states AM*ADP and AM ADP correspond to myosin heads with their nucleotide binding pocket in a partially closed and open conformation, respectively (7, 52). Rate constants are indicated by lowercase letters (rightward transitions, k2k5 and k2k5, or leftward transitions, k−2k−5 and k−2k−5) and equilibrium constants by uppercase letters (K1, K1, KT, K3, K3, K6, k6, and KDP). The equilibrium constants are association constants except for simple bimolecular reactions where they are defined as ki/ki.For the study of contractile mechanisms in both muscle and other types of cells, drugs may be useful as pharmacological tools affecting different transitions or states in the force-generating cycle. Whereas the use of drugs as tools may be less specific than site-directed mutagenesis, it also has advantages. The motor protein function may be studied in vivo, with maintained ordering of the protein components, e.g. as in the muscle sarcomere, allowing more insight into the relationship between specific molecular events and contractile properties of muscle. A drug that has been used quite extensively in this context is butanedione monoxime. The usefulness of this drug is based on firm characterization of its effect on actomyosin function on the molecular level (3, 1013). More recently other drugs, like N-benzyl-p-toluene sulfonamide (14, 15) and blebbistatin (16), have been found to affect myosin function, and their effects at the molecular level have also been elucidated in some detail (14, 15, 17, 18). Both these drugs appear to affect the actomyosin interaction in a similar way as butanedione monoxime by inhibiting a step before (or very early in) the myosin power stroke, leading to the inhibition of actomyosin cross-bridge formation and force production.In contrast to the reduced isometric force, caused by the above mentioned drugs, the bipyridine compound amrinone (Fig. 1A) has been found to increase the isometric force production of fast intact skeletal muscles of the frog (19, 20) and mouse (21) and also of fast (but much less slow) skinned muscle fibers of the rat (22). In all the fast myosin preparations, the effect of about 1 mm amrinone on isometric force was associated with characteristic changes of the force-velocity relationship (Fig. 1B), including a reduced maximum velocity of shortening (1922) and a reduced curvature of the force-velocity relationship (1922). The latter effect was accompanied (20, 21) by a less pronounced deviation of the force-velocity relationship from the hyperbolic shape (23) at high loads. There have been different interpretations of the drug effects. It has been proposed (2022) that amrinone might competitively inhibit the MgATP binding by myosin. However, more recently, results from in vitro motility assay experiments (24) challenged this idea. These results showed that amrinone reduces the sliding velocity (Vmax) at saturating MgATP concentrations but not at MgATP concentrations close to, or below, the Km value for the hyperbolic relationship between MgATP concentration and sliding velocity. Such a combination of effects is consistent with a reduced MgADP release rate (24) but not with competitive inhibition of substrate binding. However, effects of amrinone on the MgADP release rate have not been directly demonstrated. Additionally, in view of the uncertainty about what step actually determines the sliding velocity at saturating [MgATP] (see above and Refs. 79), it is of interest to consider other possible drug effects that could account for the data of Klinth et al. (24). These include the following: 1) an increased drag force, e.g. because of enhancement of weak actomyosin interactions; 2) a reduced step length; and 3) effects of the drug on the rate of MgATP-induced dissociation of actomyosin.Open in a separate windowFIGURE 1.A, structure of amrinone. B, experimental force-velocity data obtained in the presence (filled symbols) and absence (open symbols) of 1.1 mm amrinone. The data, from intact single frog muscle fibers, were obtained at 2 °C and fitted by Hill''s (42) hyperbola (lines) for data truncated at 80% of the maximum isometric force. Filled line, equation fitted to control data, a/P0* = 0.185; P0*/P0 = 1.196. Dashed line, amrinone, a/P0* = 0.347; P0*/P0 = 1.009. Force-velocity data were obtained in collaboration with Professor K. A. P. Edman. Same data as in Fig. 8 of Ref. 20. Note a decrease in maximum sliding velocity and curvature of the force-velocity relationship at low force, in response to amrinone. Also note that amrinone caused increased isometric force and a reduced deviation of the force-velocity relationship from the Hill''s hyperbola at high force. All changes of the force-velocity relationship were statistically significant (20), and similar changes were later also observed in intact mouse muscle and skinned rat muscle fibers. Data in Fig. 1 are published by agreement with Professor K. A. P. Edman.To differentiate between these hypotheses for the amrinone effects, and to gain more general insight into fundamental aspects of muscle function (e.g. mechanisms underlying the force-velocity relationship), we here study the molecular effects of amrinone on fast skeletal muscle myosin preparations in the presence and absence of actin.In vitro motility assay studies at different ionic strengths suggest that drag forces, caused by increased fraction of myosin heads in weak binding states, are not important for the effect of amrinone on sliding velocity. Likewise, optical tweezers studies showed no effect of the drug on the myosin step length. Finally, ideas that amrinone should reduce sliding velocity by reduced rate of MgATP-induced dissociation could be discarded because the drug actually increased the rate of this process. Instead, we found an amrinone-induced increase in the MgADP affinity of heavy meromyosin (HMM) in the presence of actin. Interestingly, similar effects of amrinone were not observed using myosin S1. As discussed below, this result and other results point to an amrinone-induced reduction in the rate of a strain-dependent MgADP release step. Simulations, using a model modified from that of Edman et al. (25), support this proposed mechanism of action. The results are discussed in relation to fundamental mechanisms underlying the force-velocity relationship of fast skeletal muscle, including which step determines shortening velocity and the possible importance of inter-head cooperativity.  相似文献   
952.
953.
954.
955.
The mechanism by which the enzyme pyruvate decarboxylase from two yeast species is activated allosterically has been elucidated. A total of seven three-dimensional structures of the enzyme, of enzyme variants, or of enzyme complexes from two yeast species, three of them reported here for the first time, provide detailed atomic resolution snapshots along the activation coordinate. The prime event is the covalent binding of the substrate pyruvate to the side chain of cysteine 221, thus forming a thiohemiketal. This reaction causes the shift of a neighboring amino acid, which eventually leads to the rigidification of two otherwise flexible loops, one of which provides two histidine residues necessary to complete the enzymatically competent active site architecture. The structural data are complemented and supported by kinetic investigations and binding studies, providing a consistent picture of the structural changes occurring upon enzyme activation.Pyruvate decarboxylases (EC 4.1.1.1) catalyze the non-oxidative decarboxylation of pyruvate, yielding acetaldehyde and carbon dioxide. Together with the enzyme alcohol dehydrogenase (EC 1.1.1.1), which reduces the acetaldehyde to ethanol with the help of the co-substrate NADH, it represents the metabolic pathway of alcoholic fermentation. PDC3 is localized in the cytosol of cells from yeasts, plant seeds, and a few bacteria. The catalytic activity of PDC depends on the presence of the cofactor thiamine diphosphate (ThDP), which is bound mainly via a divalent metal ion (magnesium in most cases) to the protein moiety. Many detailed kinetic studies have been published on yeast PDC wild types (19). A number of ScPDC variants were analyzed, too (19). Some active site variants (E51A, D28A, E477Q) proved to be almost catalytically inactive. PDCs are multisubunit enzymes. The typical molecular mass of one subunit is 59–61 kDa. The tetramer is the catalytically active state of most PDCs. Higher oligomers (octamers) have been described for PDCs from plant seeds (10, 11) or some fungi (12). However, studies on structure function relationships of yeast PDCs showed that the dimer is the minimum functional unit of the enzyme displaying considerable catalytic activity (13, 14). The two closely related pyruvate decarboxylases from Saccharomyces cerevisiae (ScPDC) and Kluyveromyces lactis (KlPDC) are well characterized ThDP-dependent enzymes, which share 86.3% identical amino acid residues. They have been studied in great detail by means of kinetic investigations and spectroscopic studies. Both enzymes are allosterically regulated as reflected by sigmoid steady state kinetics and lag phases in their progress curves. The substrate PYR activates the initially inactive yeast PDCs in a time-dependent manner. Kinetic studies reveal a slow isomerization as triggered by substrate binding to a separate regulatory site (15). A number of substrate surrogates have been identified, which are able to activate PDC as well. The effects of pyruvamide (PA; for the chemical structure, see Scheme 1) on the activation kinetics have been studied in detail for ScPDC (15) and for KlPDC (16). Phosphonate analogues (among them methyl acetylphosphonate, MAP, Scheme 1) of pyruvate have been applied to elucidate the catalytic cycle (1721) or to trap reaction intermediates in crystal structures (2224). Chemical modification of PDCs with group-specific reagents pointed to an important role of cysteine residues (25). Site-directed mutagenesis of cysteine residues to alanine or serine demonstrated that residue Cys-221 might be the decisive one for enzyme activation (1, 4, 26, 27). Consequently, it was postulated that the region around Cys-221 is the regulatory site of PDC, and formation of a thiohemiketal at this side chain was proposed. However, a number of questions remained elusive. (i) How is the activator fixed at the regulatory site? (ii) What are the prime structural properties of the active state as compared with the inactive state? (iii) How is the signal transmitted from the regulatory to the active site? (iv) Which are the decisive features of the active site in the activated state that render efficient catalysis possible? To answer these questions, we present here the crystal structures of KlPDC with the bound substrate surrogate MAP and of the ScPDC variants D28E and E477Q with bound substrate PYR along with kinetic studies on the activating effect of both activators and binding studies using the small angle x-ray solution scattering (SAXS) method.Open in a separate windowSCHEME 1.Chemical structures of the substrate pyruvate, the activators pyruvamide and methyl acetylphosphonate, and the thiohemiketal from pyruvate and cysteine, respectively.  相似文献   
956.
Nuclear factor (NF)-κB is a positive regulator of tumour development and progression, but how it functions in normal cells leading to oncogenesis is not clear. As cellular senescence has proven to be an intrinsic tumour suppressor mechanism that cells must overcome to establish deregulated growth, we used primary fibroblasts to follow NF-κB function in cells transitioning from senescence to subsequent immortalization. Our findings show that RelA/p65−/− murine fibroblasts immortalize at considerably faster rates than RelA/p65+/+ cells. The ability of RelA/p65−/− fibroblasts to escape senescence earlier is due to their genomic instability, characterized by high frequencies of DNA mutations, gene deletions and gross chromosomal translocations. This increase in genomic instability is closely related to a compromised DNA repair that occurs in both murine RelA/p65−/− fibroblasts and tissues. Significantly, these results can also be duplicated in human fibroblasts lacking NF-κB. Altogether, our findings present a fresh perspective on the role of NF-κB as a tumour suppressor, which acts in pre-neoplastic cells to maintain cellular senescence by promoting DNA repair and genomic stability.  相似文献   
957.
958.
Fetal haemoglobin (HbF) is a major ameliorating factor in sickle cell disease. We investigated if a quantitative trait locus on chromosome 6q23 was significantly associated with HbF and F cell levels in individuals of African descent. Single nucleotide polymorphisms (SNPs) in a 24-kb intergenic region, 33-kb upstream of the HBS1L gene and 80-kb upstream of the MYB gene, were typed in 177 healthy Afro-Caribbean subjects (AC) of approximately 7% European admixture, 631 healthy Afro-Germans (AG, a group of African and German descendents located in rural Jamaica with about 20% European admixture), 87 West African and Afro-Caribbean individuals with sickle cell anaemia (HbSS), as well as 75 Northern Europeans, which served as a contrasting population. Association with a tag SNP for the locus was detected in all four groups (AC, P = 0.005, AG, P = 0.002, HbSS patients, P = 0.019, Europeans, P = 1.5×10−7). The association signal varied across the interval in the African-descended groups, while it is more uniform in Europeans. The 6q QTL for HbF traits is present in populations of African origin and is also acting in sickle cell anaemia patients. We have started to distinguish effects originating from European and African ancestral populations in our admixed study populations.  相似文献   
959.
Florida Scrub-Jays (Aphelocoma coerulescens) in a suburban environment with year-round access to multiple sources of abundant, human-source foods consistently breed earlier each year and have lower baseline levels of circulating corticosterone (CORT) than jays in a nearby wildland setting. These findings suggest that food supplies influence CORT levels, which in turn may partially determine the timing of reproduction. However, wildland birds with access to high-quality supplemental foods did not advance breeding or lower CORT levels to the degree observed in the suburbs. Therefore, rather than quality or quantity of food consumed, the perception of a reliable and predictable food supply may be an important factor in determining laying dates. If a predictable food supply accelerates the reproductive process, it follows that food provided on an unpredictable schedule may slow reproduction. We subjected captive Western Scrub-Jays (A. californica) to a 30-day photoperiod transition from short- to long-days and tested whether birds with access to food on an unpredictable schedule exhibited delayed or reduced production of reproductive hormones compared with birds given food on a predictable schedule. Baseline CORT concentrations increased slightly during the experiment, but did not differ between treatment groups. Birds with unpredictable food had slightly lower testosterone levels relative to controls, but there was no effect on estradiol or luteinizing hormone. Our findings offer weak support for the hypothesis that an unpredictable food supply will delay the onset of reproduction; however, the artificial lab environment may limit the application of these findings to free-living populations.  相似文献   
960.
Decitabine, an epigenetic modifier that reactivates genes otherwise suppressed by DNA promoter methylation, is effective for some, but not all cancer patients, especially those with solid tumors. It is commonly recognized that to overcome resistance and improve outcome, treatment should be guided by tumor biology, which includes genotype, epigenotype, and gene expression profile. We therefore took an integrative approach to better understand melanoma cell response to clinically relevant dose of decitabine and identify complementary targets for combined therapy. We employed eight different melanoma cell strains, determined their growth, apoptotic and DNA damage responses to increasing doses of decitabine, and chose a low, clinically relevant drug dose to perform whole-genome differential gene expression, bioinformatic analysis, and protein validation studies. The data ruled out the DNA damage response, demonstrated the involvement of p21Cip1 in a p53-independent manner, identified the TGFβ pathway genes CLU and TGFBI as markers of sensitivity to decitabine and revealed an effect on histone modification as part of decitabine-induced gene expression. Mutation analysis and knockdown by siRNA implicated activated β-catenin/MITF, but not BRAF, NRAS or PTEN mutations as a source for resistance. The importance of protein stability predicted from the results was validated by the synergistic effect of Bortezomib, a proteasome inhibitor, in enhancing the growth arrest of decitabine in otherwise resistant melanoma cells. Our integrative analysis show that improved therapy can be achieved by comprehensive analysis of cancer cells, identified biomarkers for patient''s selection and monitoring response, as well as targets for improved combination therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号