首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9408篇
  免费   846篇
  国内免费   3篇
  2022年   71篇
  2021年   171篇
  2020年   100篇
  2019年   132篇
  2018年   119篇
  2017年   140篇
  2016年   224篇
  2015年   400篇
  2014年   415篇
  2013年   546篇
  2012年   691篇
  2011年   640篇
  2010年   452篇
  2009年   346篇
  2008年   536篇
  2007年   506篇
  2006年   474篇
  2005年   458篇
  2004年   449篇
  2003年   399篇
  2002年   353篇
  2001年   202篇
  2000年   193篇
  1999年   144篇
  1998年   118篇
  1997年   108篇
  1996年   86篇
  1995年   83篇
  1994年   60篇
  1993年   69篇
  1992年   108篇
  1991年   66篇
  1990年   92篇
  1989年   88篇
  1988年   69篇
  1987年   59篇
  1986年   59篇
  1985年   75篇
  1984年   56篇
  1983年   44篇
  1982年   36篇
  1981年   39篇
  1980年   36篇
  1979年   62篇
  1978年   58篇
  1977年   59篇
  1976年   37篇
  1974年   49篇
  1973年   43篇
  1972年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A mosaic genomic island comprising Shigella resistance locus (SRL) sequences flanked by segments of Escherichia coli O157:H7 strain EDL933 O islands 43, 81, and 82 was identified in sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H(-) strain 493/89. This mosaic island is absent from strain EDL933. PCR targeting the SRL-related sequence is a useful tool to distinguish SF EHEC O157:H(-) from EHEC O157:H7.  相似文献   
992.
In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.  相似文献   
993.
A rapid superfusion system measuring the amounts, kinetics, and Ca dependencies of released 45Ca, was used to examine the effects of ryanodine (RY), caffeine (CF), and cyclic ADP ribose (cADPr) on sea urchin egg homogenates. The RY-sensitive compartment had more than twice the Ca release capacity of the CF-sensitive or cADPr-sensitive compartment. cADPr-stimulated 45Ca release required calcium with half-maximal activation at approximately 0.2 to 0.6 microM [Ca2+]. K(1/2) for cADPr activation was approximately 100 nM, and in spite of the Ca requirement for cADPr-stimulated release, the cADPr affinity was not affected by [Ca2+]. Peak 45Ca release rate with cADPr (3 microM) was greater than with CF (20 mM), yet the release amounts were similar and both were [Ca2+]-dependent. When activated with CF and cADPr simultaneously, 45Ca release was large and, no longer [Ca2+]-dependent. Mg competitively inhibited the Ca activation site(s), yet did not inhibit the activation with CF-plus-cADPr. Pre-release of 45Ca by cADPr with low (approximately 0.1 microM) [Ca2+] right-shifted the [Ca2+] dependence of the remaining cADPr-response. These data suggest that (a) only a portion of RY-sensitive compartments empty when stimulated with cADPr or CF, (b) Ca and cADPr act on non-interacting sites, and (c) cADPr-sensitive compartments represent a heterogeneous population with different [Ca2+] dependencies.  相似文献   
994.
995.
High-pressure freezing (HPF) in combination with freeze substitution (FS) was used to analyse changes in the structure of barley chloroplasts during the daily change of light and darkness. In contrast to conventional treatment of samples, HPF-FS revealed substantial differences in chloroplast shape, volume and ultrastructure in the light period and during darkness. While chloroplasts have an ellipsoidal shape in the light, they have an enlarged and round form during the dark period. Samples collected in the light show the typical differentiation of stroma and grana thylakoids as observed by conventional ultrastructural analyses. In chloroplasts of samples collected during the dark period, thylakoids were swollen and grana stacks to a large extent were disintegrated. Similar changes occurred when leaves in the light were treated with the uncoupler gramicidin. The results suggest that the light-dependent changes in thylakoid membrane organization are related to the light-dependent changes in the ionic milieu of the thylakoid lumen and the stroma.  相似文献   
996.
997.
It is well documented that neuropeptide Y (NPY) exerts a wide range of biological functions through at least five NPY Y receptor subtypes (Y1-Y5), but its immunological effects only recently came into focus. Using NPY family peptides and NPY-related receptor-specific peptides as well as Y1 and Y2 receptor antagonists, we have tested which NPY Y receptors are involved in NPY-induced modulation of rat peritoneal macrophage function in vitro. NPY and PYY increased oxidative burst in phorbol myristate acetate (PMA)-stimulated macrophages involving activation of protein kinase C (PKC), and decreased it in zymosan-stimulated cells resembling inhibition of signaling pathways subsequent to binding of zymosan particles for the iC3b fragment receptor on macrophages. The combined treatment with NPY and NPY Y receptor antagonists revealed that NPY-induced potentiation of oxidative burst in PMA-stimulated cells is mediated through Y1 and Y2 receptors, while NPY-induced suppression in zymosan-stimulated cells is mediated through Y2 receptors only. NPY-related peptides differently modulated macrophage function, confirming involvement of NPY Y2 receptor in both potentiation and suppression of oxidative burst in these cells. Additionally, it was shown that NPY Y5 receptor mediated suppression of oxidative burst in PMA- and zymosan-stimulated macrophages. Taken together, the present data reveal an NPY Y1 and Y2/Y5 receptor interaction in NPY-induced modulation of macrophage functions related to inflammation.  相似文献   
998.
The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.  相似文献   
999.
1000.
A microelectronic array assay was developed to specifically genotype Helicobacter pylori versus Helicobacter heilmannii and to determine antimicrobial resistance. Helicobacter 16S rRNA and 23S rRNA genes were specifically generated with Helicobacter genus-specific primers, respectively. The single-nucleotide polymorphisms (SNPs) in 16S rRNA, 268T specific in the H. pylori sequence, and 263A specific in H. heilmannii were used as molecular markers for identification of H. pylori and H. heilmannii, respectively. A triple-base-pair resistant mutation, AGA965-967TTC in 16S rRNA, is known to be responsible for H. pylori tetracycline resistance and was detected to identify resistant strains. H. pylori macrolide resistance was determined by the identification of 3 defined mutations in the 23S rRNA gene using the same method. The assay could be directly used to detect H. pylori in feces. The assay performs multiple determinations, including identification of Helicobacter species and antibiotic resistances, on the same microelectronic platform and is highly amenable to the development of other DNA-based assays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号