全文获取类型
收费全文 | 166篇 |
免费 | 5篇 |
专业分类
171篇 |
出版年
2022年 | 3篇 |
2021年 | 6篇 |
2020年 | 4篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 5篇 |
2016年 | 8篇 |
2015年 | 11篇 |
2014年 | 15篇 |
2013年 | 9篇 |
2012年 | 11篇 |
2011年 | 10篇 |
2010年 | 8篇 |
2009年 | 5篇 |
2008年 | 5篇 |
2007年 | 7篇 |
2006年 | 10篇 |
2005年 | 7篇 |
2004年 | 10篇 |
2003年 | 9篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1997年 | 2篇 |
1994年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1985年 | 2篇 |
1982年 | 1篇 |
排序方式: 共有171条查询结果,搜索用时 15 毫秒
61.
62.
63.
Svitlana Shpyleva Samuil Ivanovsky Aline de Conti Stepan Melnyk Volodymyr Tryndyak Frederick A. Beland S. Jill James Igor P. Pogribny 《PloS one》2014,9(11)
The molecular pathogenesis of autism is complex and involves numerous genomic, epigenomic, proteomic, metabolic, and physiological alterations. Elucidating and understanding the molecular processes underlying the pathogenesis of autism is critical for effective clinical management and prevention of this disorder. The goal of this study is to investigate key molecular alterations postulated to play a role in autism and their role in the pathophysiology of autism. In this study we demonstrate that DNA isolated from the cerebellum of BTBR T+tf/J mice, a relevant mouse model of autism, and from human post-mortem cerebellum of individuals with autism, are both characterized by an increased levels of 8-oxo-7-hydrodeoxyguanosine (8-oxodG), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC). The increase in 8-oxodG and 5mC content was associated with a markedly reduced expression of the 8-oxoguanine DNA-glycosylase 1 (Ogg1) and increased expression of de novo DNA methyltransferases 3a and 3b (Dnmt3a and Dnmt3b). Interestingly, a rise in the level of 5hmC occurred without changes in the expression of ten-eleven translocation expression 1 (Tet1) and Tet2 genes, but significantly correlated with the presence of 8-oxodG in DNA. This finding and similar elevation in 8-oxodG in cerebellum of individuals with autism and in the BTBR T+tf/J mouse model warrant future large-scale studies to specifically address the role of OGG1 alterations in pathogenesis of autism. 相似文献
64.
65.
Dimitry Y. Sorokin Tatiana V. Khijniak Nadezhda A. Kostrikina Alexander G. Elcheninov Stepan V. Toshchakov Nicole J. Bale Jaap S. Sinninghe Damsté Ilya V. Kublanov 《Systematic and applied microbiology》2018,41(4):355-362
Six strains of extremely halophilic and alkaliphilic euryarchaea were enriched and isolated in pure culture from surface brines and sediments of hypersaline alkaline lakes in various geographical locations with various forms of insoluble cellulose as growth substrate. The cells are mostly flat motile rods with a thin monolayer cell wall while growing on cellobiose. In contrast, the cells growing with cellulose are mostly nonmotile cocci covered with a thick external EPS layer. The isolates, designated AArcel, are obligate aerobic heterotrophs with a narrow substrate spectrum. All strains can use insoluble celluloses, cellobiose, a few soluble glucans and xylan as their carbon and energy source. They are extreme halophiles, growing within the range from 2.5 to 4.8 M total Na+ (optimum at 4 M) and obligate alkaliphiles, with the pH range for growth from 7.5 to 9.9 (optimum at 8.5–9). The core archaeal lipids of strain AArcel5T were dominated by C20–C20 dialkyl glycerol ether (DGE) (i.e. archaeol) and C20–C25 DGE in nearly equal proportion. The 16S rRNA gene analysis indicated that all six isolates belong to a single genomic species mostly related to the genera Saliphagus-Natribaculum-Halovarius. Taking together a substantial phenotypic difference of the new isolates from the closest relatives and the phylogenetic distance, it is concluded that the AArcel group represents a novel genus-level branch within the family Natrialbaceae for which the name Natronobiforma cellulositropha gen. nov., sp. nov. is proposed with AArcel5T as the type strain (JCM 31939T = UNIQEM U972T). 相似文献
66.
Kyrchanova O Ivlieva T Toshchakov S Parshikov A Maksimenko O Georgiev P 《Nucleic acids research》2011,39(8):3042-3052
Expression of the genes Ubx, abd-A, and Abd-B of the bithorax complex depends on its cis-regulatory region, which is divided into discrete functional domains (iab). Boundary/insulator elements, named Mcp, Fab-6, Fab-7 and Fab-8 (PTS/F8), have been identified at the borders of the iab domains. Recently, binding sites for a Drosophila homolog of the vertebrate insulator protein CTCF have been identified in Mcp, Fab-6 and Fab-8 and also in several regions that correspond to predicted boundaries, Fab-3 and Fab-4 in particular. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when the activator and the promoter are separated by a 5-kb yellow gene, we have tested functional interactions between the boundaries. The results show that all dCTCF-containing boundaries interact with each other. However, inactivation of dCTCF binding sites in Mcp, Fab-6 and PTS/F8 only partially reduces their ability to interact, suggesting the presence of additional protein(s) supporting distant interactions between the boundaries. Interestingly, only Fab-6, Fab-7 (which contains no dCTCF binding sites) and PTS/F8 interact with the upstream region of the Abd-B promoter. Thus, the boundaries might be involved in supporting the specific interactions between iab enhancers and promoters of the bithorax complex. 相似文献
67.
68.
Besides their role in hemostasis, platelets are also highly involved in the pathogenesis and progression of cardiovascular diseases. Since important and initial steps of platelet activation and aggregation are regulated by phosphorylation events, a comprehensive study aimed at the characterization of phosphorylation-driven signaling cascades might lead to the identification of new target proteins for clinical research. However, it becomes increasingly evident that only a comprehensive phosphoproteomic approach may help to characterize functional protein networks and their dynamic alteration during physiological and pathophysiological processes in platelets. In this review, we discuss current methodologies in phosphoproteome research including their potentials as well as limitations, from sample preparation to classical approaches like radiolabeling and state-of-the-art mass spectrometry techniques. 相似文献
69.
70.