首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   5篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   11篇
  2014年   15篇
  2013年   9篇
  2012年   11篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   10篇
  2005年   7篇
  2004年   10篇
  2003年   9篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1985年   2篇
  1982年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
111.
βB2-crystallin (gene symbol: Crybb2/CRYBB2) was first described as a structural protein of the ocular lens. This gene, however, is also expressed in several regions of the mammalian brain, although its function in this organ remains entirely unknown. To unravel some aspects of its function in the brain, we combined behavioral, neuroanatomical, and physiological analyses in a novel Crybb2 mouse mutant, O377. Behavioral tests with male O377 mutants revealed altered sensorimotor gating, suggesting modified neuronal functions. Since these mouse mutants also displayed reduced hippocampal size, we concentrated further investigations on the hippocampus. Free intracellular Ca2+ levels were increased and apoptosis was enhanced in the hippocampus of O377 mutants. Moreover, the expression of the gene encoding calpain 3 (gene symbol Capn3) was elevated and the expression of genes coding for the NMDA receptor subunits was downregulated. Additionally, the number of parvalbumin-positive interneurons was decreased in the hippocampus but not in the cortex of the mutants. High-speed voltage-sensitive dye imaging demonstrated an increased translation of input-to-output neuronal activity in the dentate gyrus of this Crybb2 mutant. These results point to an important function of βB2-crystallin in the hippocampal network. They indicate pleiotropic effects of mutations in the Crybb2 gene, which previously had been considered to be specific to the ocular lens. Moreover, our results are the first to demonstrate that βB2-crystallin has a role in hippocampal function and behavioral phenotypes. This model can now be further explored by future experiments.  相似文献   
112.
Influence of a new protein-peptide complex on promoting skin wound healing in male BALB/c mice was studied. Protein-peptide complex, extracted from Sus scrofa immune organs, was percutaneously administered using two methods: by lecithin gel-like liquid crystals and by liquid microemulsion. On the fifth day, wound closure in mice with a linear wound model become faster in group (less 2 days comparison to other ones), which was treated with lecithin liquid crystals carrying the protein-peptide complex. This promoting healing can be caused by resorption of bioactive high-molecular compounds the animal skin. In mice with the linear wound model, the tensile strength of the scars were respectively higher both in mice, treated using lecithin liquid crystals with protein-peptide complex, and in mice, treated using microemulsion containing protein-peptide complex, by 215.4% and 161.5% relative to the animals, which did not receive bioactive substances for wound treatment. It was associated with the regeneratory effects of tissue- and species-specific protein-peptide complexes, including α-thymosin Sus scrofa (C3VVV8_PIG, m/z 3802.8) and other factors, which were described as parts of the new extracted complex. This reveals that percutaneous administration of the complex reliably activates local regenerative processes in animals.  相似文献   
113.
Rapid diagnosis of blood infections requires fast and efficient separation of bacteria from blood. We have developed spinning hollow disks that separate bacteria from blood cells via the differences in sedimentation velocities of these particles. Factors affecting separation included the spinning speed and duration, and disk size. These factors were varied in dozens of experiments for which the volume of separated plasma, and the concentration of bacteria and red blood cells (RBCs) in separated plasma were measured. Data were correlated by a parameter of characteristic sedimentation length, which is the distance that an idealized RBC would travel during the entire spin. Results show that characteristic sedimentation length of 20 to 25 mm produces an optimal separation and collection of bacteria in plasma. This corresponds to spinning a 12-cm-diameter disk at 3,000 rpm for 13 s. Following the spin, a careful deceleration preserves the separation of cells from plasma and provides a bacterial recovery of about 61 ± 5%.  相似文献   
114.
115.
Hyperplasia and hypertrophy of fat cells can be found in obesity and increased adiposity is associated with endothelial dysfunction as an early event of atherosclerosis. However, it is unclear whether human adipocytes directly influence endothelial protein secretion. To study the crosstalk between fat and endothelial cells, human umbilical venous endothelial cells (HUVECs) were cultured in infranatants (Adipo) of primary differentiated human adipocytes. Interestingly, significantly increased secretion of 23 cytokines and chemokines from HUVECs was detected in four independent experiments after Adipo stimulation by protein array analysis detecting a total of 174 different proteins. Among those, time‐dependent Adipo‐induced upregulation of cytokine secretion in HUVECs was confirmed by ELISA for interleukin (IL)‐8, monokine induced by gamma interferon, macrophage inflammatory protein (MIP)‐1β, MIP‐3α, monocyte chemoattractant protein‐1, and IL‐6. Factors besides adiponectin, leptin, resistin, and tumor necrosis factor α appear to mediate these stimulatory effects. Our findings suggest that endothelial cell secretion is significantly influenced towards a proinflammatory pattern by adipocyte‐secreted factors. J. Cell. Biochem. 106: 729–737, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
116.
117.
118.
Insertion of metals into various tetrapyrroles is catalysed by a group of enzymes called chelatases, e.g. nickel, cobalt, magnesium and ferro-chelatase. It has been proposed that catalytic metallation includes distorting the porphyrin substrate by the enzyme towards a transition state-like geometry in which at least one of the pyrrole rings will be available for metal chelation. Here, we present a study of metal insertion into the transition-state inhibitor of protoporphyrin IX ferrochelatase, N-methyl mesoporphyrin (N-MeMP), by time-resolved crystallography and mass spectrometry with and without the presence of ferrochelatase. The results show that metallation of N-MeMP has a very limited effect on the conformation of the residues that participate in porphyrin and metal binding. These findings support theoretical data, which indicate that product release is controlled largely by the strain created by metal insertion into the distorted porphyrin. The results suggest that, similar to non-catalytic metallation of N-MeMP, the ferrochelatase-assisted metallation depends on the ligand exchange rate for the respective metal. Moreover, ferrochelatase catalyses insertion of Cu(II) and Zn(II) into N-MeMP with a rate that is about 20 times faster than non-enzymatic metallation in solution, suggesting that the catalytic strategy of ferrochelatase includes a stage of acceleration of the rate of ligand exchange for the metal substrate. The greater efficiency of N-MeMP metallation by Cu(II), as compared to Zn(II), contrasts with the K(m) values for Zn(II) (17 microM) and Cu(II) (170 microM) obtained for metallation of protoporphyrin IX. We suggest that this difference in metal specificity depends on the type of distortion imposed by the enzyme on protoporphyrin IX, which is different from the intrinsic non-planar distortion of N-MeMP. A mechanism of control of metal specificity by porphyrin distortion may be general for different chelatases, and may have common features with the mechanism of metal specificity in crown ethers.  相似文献   
119.
15-Lipoxygenases are lipid-peroxidizing enzymes which have been implicated in the pathogenesis of various diseases, such as inflammation, atherosclerosis, and osteoporosis. Although the crystal structures for several lipoxygenase isoforms have been solved, there is little information on the substrate alignment at the active site and its impact on the catalytic mechanism. Investigating the oxygenation of specifically designed hydroxy fatty acids, we observed a pronounced enantioselectivity of 15-lipoxygenases for substrates carrying the oxygen moiety in close proximity to the site of hydrogen abstraction [16(R/S)-HETE, 17(R/S)-HETE]. To investigate the mechanistic basis for this unexpected behavior, we applied a strategy involving targeted substrate modification, site-directed mutagenesis, and structural modeling of the enzyme-substrate complex. Taken together, our data suggest that an (S)-hydroxy group in 16-HETE may form a hydrogen bridge between the substrate molecule and Gln548, which contributes to proper alignment of the fatty acid derivative at the active site of the enzyme. This interaction, which was not observed with 16(R)-HETE, 18(R)-HETE, or 18(S)-HETE, appears to be a major reason for the high degree of enantioselectivity during lipoxygenation of 16-HETE.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号