首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2059篇
  免费   209篇
  2023年   11篇
  2022年   10篇
  2021年   40篇
  2020年   24篇
  2019年   30篇
  2018年   45篇
  2017年   44篇
  2016年   68篇
  2015年   127篇
  2014年   110篇
  2013年   162篇
  2012年   197篇
  2011年   187篇
  2010年   118篇
  2009年   117篇
  2008年   151篇
  2007年   147篇
  2006年   124篇
  2005年   107篇
  2004年   96篇
  2003年   72篇
  2002年   64篇
  2001年   28篇
  2000年   12篇
  1999年   29篇
  1998年   20篇
  1997年   12篇
  1996年   9篇
  1995年   10篇
  1994年   10篇
  1993年   9篇
  1992年   5篇
  1991年   15篇
  1990年   4篇
  1989年   11篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1981年   2篇
  1980年   4篇
  1975年   3篇
  1973年   5篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1965年   1篇
  1962年   1篇
  1959年   1篇
排序方式: 共有2268条查询结果,搜索用时 140 毫秒
991.
HIV-1 Gag is the only protein required for retroviral particle assembly. There is evidence suggesting that phosphatidylinositol phosphate and nucleic acid are essential for viruslike particle assembly. To elucidate structural foundations of interactions of HIV-1 Gag with the assembly cofactors PI(4,5)P2 and RNA, we employed mass spectrometric protein footprinting. In particular, the NHS-biotin modification approach was used to identify the lysine residues that are exposed to the solvent in free Gag and are protected from biotinylation by direct protein-ligand or protein-protein contacts in Gag complexes with PI(4,5)P2 and/or RNA. Of 21 surface lysines readily modified in free Gag, only K30 and K32, located in the matrix domain, were strongly protected in the Gag-PI(4,5)P2 complex. Nucleic acid also protected these lysines, but only at significantly higher concentrations. In contrast, nucleic acids and not PI(4,5)P2 exhibited strong protection of two nucleocapsid domain residues: K391 and K424. In addition, K314, located in the capsid domain, was specifically protected only in the presence of both PI(4,5)P2 and nucleic acid. We suggest that concerted binding of PI(4,5)P2 and nucleic acid to the matrix and nucleocapsid domains, respectively, promotes protein-protein interactions involving capsid domains. These protein-protein interactions must be involved in virus particle assembly.  相似文献   
992.
The gene yhdA from Bacillus subtilis encoding a putative flavin mononucleotide (FMN)-dependent oxidoreductase was cloned and heterologously expressed in Escherichia coli. The purified enzyme has a noncovalently bound FMN cofactor, which is preferentially reduced by NADPH, indicating that YhdA is a NADPH:FMN oxidoreductase. The rate of NADPH oxidation is enhanced by the addition of external FMN, and analysis of initial rate measurements reveals the occurrence of a ternary complex in a bi-bi reaction mechanism. YhdA has also been shown to reductively cleave the -N=N- bond in azo dyes at the expense of NADPH, and hence, it possesses azoreductase activity, however, at a rate 100 times slower than that found for FMN. Using Cibacron Marine as a model compound, we could demonstrate that the dye is a competitive inhibitor of NADPH and FMN. The utilization of NADPH and the absence of a flavin semiquinone radical distinguish YhdA from flavodoxins, which adopt the same structural fold, i.e., a five-stranded beta sheet sandwiched by five alpha helices. The native molecular-mass of YhdA was determined to be 76 kDa, suggesting that the protein occurs as a tetramer, whereas the YhdA homologue in Saccharomyces cerevisiae (YLR011wp) forms a dimer in solution. Interestingly, the different oligomerization of these homologous proteins correlates to their thermostability, with YhdA exhibiting a melting point of 86.5 degrees C, which is 26.3 degrees C higher than that for the yeast protein. This unusually high melting point is proposed to be the result of increased hydrophobic packing between dimers and the additional presence of four salt bridges stabilizing the dimer-dimer interface.  相似文献   
993.
994.
995.
Lysosomal degradation of cytoplasm by way of autophagy is essential for cellular amino acid homeostasis and for tissue remodeling. In insects such as Drosophila, autophagy is developmentally upregulated in the larval fat body prior to metamorphosis. Here, autophagy is induced by the hormone ecdysone through down-regulation of the autophagy-suppressive phosphoinositide 3-kinase (PI3K) signaling pathway. In yeast, Vps18 and other members of the HOPS complex have been found essential for autophagic degradation. In Drosophila, the Vps18 homologue Deep orange (Dor) has previously been shown to mediate fusion of multivesicular endosomes with lysosomes. A requirement of Dor for ecdysone-mediated chromosome puffing has also been reported. In the present report, we have tested the hypothesis that Dor may control programmed autophagy at the level of ecdysone signaling as well as by mediating autophagosome-to-lysosome fusion. We show that dor mutants are defective in programmed autophagy and provide evidence that autophagy is blocked at two levels. First, PI3K activity was not down-regulated correctly in dor larvae, which correlated with a decrease in ecdysone reporter activity. The down-regulation of PI3K activity was restored by feeding ecdysone to the mutant larvae. Second, neither exogenous ecdysone nor overexpression of PTEN, a silencer of PI3K signaling, restored fusion of autophagosomes with lysosomes in the fat body of dor mutants. These results indicate that Dor controls autophagy indirectly, via ecdysone signaling, as well as directly, via autolysosomal fusion.  相似文献   
996.
Ramonda sp. (Gesneriaceae) is an endemic and relic plant ina very small group of poikilohydric angiosperms that are ableto survive in an almost completely dehydrated state. Senescence-and drought-related changes in the activity of peroxidase (POD;EC 1.11.1.7 [EC] ), ascorbate peroxidase (EC 1.11.1.11 [EC] ), and superoxidedismutase (SOD; EC 1.15.1.1 [EC] ) were determined in leaves of differentage and relative water content. The results indicate that differentPOD isoforms were stimulated during senescence and dehydration.Two of the soluble POD isoforms were anionic with pI 4.5, andtwo were cationic with pI 9.3 and 9.0. The activity of ascorbateperoxidase remained unchanged either by drought or senescence.For the first time, SOD isoforms have now been determined inthis resurrection plant. Several SOD isoforms, all of the Mntype, were found to be anionic with pI 4 and a few others hadpI from 5 to 6, while one band of FeSOD with a lower molecularweight was neutral. Rehydration brought about a remarkable decreaseover the first hour in the activity of all the antioxidant enzymesexamined but activity recovered 1 d after rehydration. The resultsconfirmed that dehydration and senescence caused disturbancein the redox homeostasis of Ramonda leaves, while inducing differentPOD isoforms. A physiological role of peroxidase reaction withhydroxycinnamic acids in conservation and protection of cellularconstituents of desiccated Ramonda leaves is suggested. Key words: Desiccation, peroxidase, Ramonda, senescence, superoxide dismutase  相似文献   
997.
Aim To assess the relative importance of climate, biotope and soil variables as well as geographical location for the species richness of plants, butterflies, day‐active macromoths and wild bees in boreal agricultural landscapes. Location A total of 68 agricultural landscapes located in southern Finland. Methods Generalized linear mixed models were used to analyse the effects of environmental (climate, biotope and soil) and spatial (latitude and longitude) variables on species richness of four taxa in 136 study squares of 0.25 km2. Using partial regression, the variation in species richness was decomposed into the purely environmental fraction; the spatially structured environmental fraction; and the purely spatial fraction, including variables retained in cubic trend surface regression. Results Species richness of all taxa was positively correlated with temperature. Species richness of plants and butterflies was also positively correlated with the heterogeneity of landscape. The extent of low‐intensity agricultural land and forest had a positive effect, and the extent of cultivated field a negative effect on the species richness of these taxa. The effect of soil characteristics on the number of observed species was negligible for all taxa. The greatest part of the explained variation for all taxa was accounted for by the pure effect of geographical location. To a somewhat lesser extent, the species richness of plants, butterflies and bees was also related to the effects of spatially structured environmental variables, and the species richness of macromoths to the effects of environmental variables. Main conclusions Multi‐species richness of boreal agricultural landscapes at the scale of 0.25 km2 was associated with the heterogeneity of the local landscape. However, large‐scale geographical variation in species richness was also observed, which indicates the importance of climate and geographical location for the taxa studied. These results highlight the fact that, even on a landscape scale, geographical factors should be taken into account in biodiversity studies. Heterogeneous agricultural landscapes, including forest and non‐crop biotopes, should be preserved or restored to maintain biodiversity.  相似文献   
998.
The rapid degradation of ribonucleic acids (RNA) by ubiquitous ribonucleases limits the efficacy of new therapies based on RNA molecules. Therefore, our aim was to characterize the natural ribonuclease activities on the skin and in blood plasma i.e. at sites where many drugs in development are applied. On the skin surfaces of Homo sapiens and Mus musculus we observed dominant pyrimidine-specific ribonuclease activity. This activity is not prevented by a cap structure at the 5'-end of messenger RNA (mRNA) and is not primarily of a 5'- or 3'-exonuclease type. Moreover, the ribonuclease activity on the skin or in blood plasma is not inhibited by chemical modifications introduced at the 2'OH group of cytidine or uridine residues. It is, however, inhibited by the ribonuclease inhibitor RNasin® although not by the ribonuclease inhibitor SUPERase· In?. The application of our findings in the field of medical science may result in an improved efficiency of RNA-based therapies that are currently in development.  相似文献   
999.
The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+ -Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes.  相似文献   
1000.
RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal-domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint protein kinase Mec1, although the mechanism by which Rtt107 is targeted by Mec1 after checkpoint activation is currently unclear. Slx4, a component of the Slx1-Slx4 structure-specific nuclease, formed a complex with Rtt107. Deletion of SLX4 conferred many of the same DNA-repair defects observed in rtt107delta, including DNA damage sensitivity, prolonged DNA damage checkpoint activation, and increased spontaneous DNA damage. These phenotypes were not shared by the Slx4 binding partner Slx1, suggesting that the functions of the Slx4 and Slx1 proteins in the DNA damage response were not identical. Of particular interest, Slx4, but not Slx1, was required for phosphorylation of Rtt107 by Mec1 in vivo, indicating that Slx4 was a mediator of DNA damage-dependent phosphorylation of the checkpoint effector Rtt107. We propose that Slx4 has roles in the DNA damage response that are distinct from the function of Slx1-Slx4 in maintaining rDNA structure and that Slx4-dependent phosphorylation of Rtt107 by Mec1 is critical for replication restart after alkylation damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号