首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   35篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   11篇
  2012年   10篇
  2011年   23篇
  2010年   15篇
  2009年   4篇
  2008年   20篇
  2007年   14篇
  2006年   21篇
  2005年   12篇
  2004年   13篇
  2003年   13篇
  2002年   11篇
  2001年   14篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1984年   4篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有277条查询结果,搜索用时 46 毫秒
221.
222.
The inhibitory effect of 23N-alkyl-4-piperidylesters (alkyl = ethyl-butyl) (APEA) and 8N-ethyl-2-pyrrolidinylmethylesters (EPMEA) of 2- and 3-substituted alkoxyphenylcarbamic acids (alkoxy = butoxy-heptyloxy-) on photosynthetic Hill reaction activity of spinach chloroplasts and on chlorophyll (Chl) synthesis in green algaeChlorella vulgaris was investigated. Inhibitory activities of these compounds were strongly connected with the lipophilicity of the whole molecule. A lower inhibitory activity of 2-alkoxy-substituted derivatives in relation to the corresponding 3-substituted ones was confirmed. Electron spin resonance (ESR) spectra of spinach chloroplasts demonstrated that the studied compounds affected the structure of photosystem (PS) 2 with the release of Mn2+ ions into interior of thylakoid membranes.  相似文献   
223.
224.
Op18/stathmin (Op18) is a phosphorylation-regulated and differentially expressed microtubule-destabilizing protein in animal cells. Op18 regulates tubulin monomer-polymer partitioning of the interphase microtubule system and forms complexes with tubulin heterodimers. Recent reports have shown that specific tubulin-folding cofactors and related proteins may disrupt tubulin heterodimers. We therefore investigated whether Op18 protects unpolymerized tubulin from such disruptive activities. Our approach was based on inducible overexpression of two tubulin-disrupting proteins, namely TBCE, which is required for tubulin biogenesis, and E-like, which has been proposed to regulate tubulin turnover and microtubule stability. Expression of either of these proteins was found to cause a rapid degradation of both alpha-tubulin and beta-tubulin subunits of unpolymerized, but not polymeric, tubulin heterodimers. We found that depletion of Op18 by means of RNA interference increased the susceptibility of tubulin to TBCE or E-like mediated disruption, while overexpressed Op18 exerted a tubulin-protective effect. Tubulin protection was shown to depend on Op18 levels, binding affinity, and the partitioning between tubulin monomers and polymers. Hence, the present study reveals that Op18 at physiologically relevant levels functions to preserve the integrity of tubulin heterodimers, which may serve to regulate tubulin turnover rates.  相似文献   
225.
A ubiquitin-binding endosomal protein machinery is responsible for sorting endocytosed membrane proteins into intraluminal vesicles of multivesicular endosomes (MVEs) for subsequent degradation in lysosomes. The Hrs-STAM complex and endosomal sorting complex required for transport (ESCRT)-I, -II and -III are central components of this machinery. Here, we have performed a systematic analysis of their importance in four trafficking pathways through endosomes. Neither Hrs, Tsg101 (ESCRT-I), Vps22/EAP30 (ESCRT-II), nor Vps24/CHMP3 (ESCRT-III) was required for ligand-mediated internalization of epidermal growth factor (EGF) receptors (EGFRs) or for recycling of cation-independent mannose 6-phosphate receptors (CI-M6PRs) from endosomes to the trans-Golgi network (TGN). In contrast, both Hrs and ESCRT subunits were equally required for degradation of both endocytosed EGF and EGFR. Whereas depletion of Hrs or Tsg101 caused enhanced recycling of endocytosed EGFRs, this was not the case with depletion of Vps22 or Vps24. Depletion of Vps24 instead caused a strong increase in the levels of CI-M6PRs and a dramatic redistribution of the Golgi and the TGN. These results indicate that, although Hrs-STAM and ESCRT-I, -II and -III have a common function in degradative protein sorting, they play differential roles in other trafficking pathways, probably reflecting their functions at distinct stages of the endocytic pathway.  相似文献   
226.
The small GTPase Rab5 has emerged as an important regulator of animal development, and it is essential for endocytic trafficking. However, the mechanisms that link Rab5 activation to cargo entry into early endosomes remain unclear. We show here that Drosophila Rabenosyn (Rbsn) is a Rab5 effector that bridges an interaction between Rab5 and the Sec1/Munc18-family protein Vps45, and we further identify the syntaxin Avalanche (Avl) as a target for Vps45 activity. Rbsn and Vps45, like Avl and Rab5, are specifically localized to early endosomes and are required for endocytosis. Ultrastructural analysis of rbsn, Vps45, avl, and Rab5 null mutant cells, which show identical defects, demonstrates that all four proteins are required for vesicle fusion to form early endosomes. These defects lead to loss of epithelial polarity in mutant tissues, which overproliferate to form neoplastic tumors. This work represents the first characterization of a Rab5 effector as a tumor suppressor, and it provides in vivo evidence for a Rbsn–Vps45 complex on early endosomes that links Rab5 to the SNARE fusion machinery.  相似文献   
227.
Barbary macaques (Macaca sylvanus), now restricted in the wild to a few isolated forested areas of Morocco and Algeria, are present in a free‐ranging colony on Gibraltar. For many decades, the Gibraltar colony was exposed to multiple bottlenecks due to highly nonrandom removal of animals, followed by repeated introductions of animals from North Africa. Moreover, because of complete isolation, Gibraltar's several social groups of macaques provide an ideal system to study the genetic consequences of dispersal in cercopithecines in situ. Predictions of genetic consequences due to male‐biased dispersal in cercopithecines will be different for autosomal and maternally inherited genetic markers, such as the control region of the mitochondrial DNA. We used a panel of 14 highly polymorphic microsatellite loci and part of the hypervariable region I of the mitochondrial control region to estimate genetic structure between five social groups in Gibraltar. Surprisingly, for autosomal markers, both classical summary statistics and an individual‐based method using a Bayesian framework detected significant genetic structure between social groups in Gibraltar, despite much closer proximity than wild Algerian and Moroccan populations. Mitochondrial data support this finding, as a very substantial portion of the total genetic variation (70.2%) was found between social groups. Using two Bayesian approaches, we likewise identified not only a small number of male first‐generation immigrants (albeit less than expected for cercopithecines) but also unexpectedly a few females. We hypothesize that the culling of males that are more likely to disperse might slow down genetic homogenization among neighbouring groups, but may also and more perversely produce selection on certain behavioural traits. This may have important repercussions for conservation, as it could lead to evolutionary changes that are not due to inbreeding or genetic drift.  相似文献   
228.
Linkage analysis and DNA sequencing in a family exhibiting an X-linked mental retardation (XLMR) syndrome, characterized by microcephaly, epilepsy, ataxia, and absent speech and resembling Angelman syndrome, identified a deletion in the SLC9A6 gene encoding the Na(+)/H(+) exchanger NHE6. Subsequently, other mutations were found in a male with mental retardation (MR) who had been investigated for Angelman syndrome and in two XLMR families with epilepsy and ataxia, including the family designated as having Christianson syndrome. Therefore, mutations in SLC9A6 cause X-linked mental retardation. Additionally, males with findings suggestive of unexplained Angelman syndrome should be considered as potential candidates for SLC9A6 mutations.  相似文献   
229.
The Toll/interleukin-1 receptor (TIR) domain is a highly conserved signaling domain found in the intracellular regions of Toll-like receptors (TLRs), in interleukin-1 receptors, and in several cytoplasmic adaptor proteins. TIR domains mediate receptor signal transduction through recruitment of adaptor proteins and play critical roles in the innate immune response and inflammation. This work presents the 2.2A crystal structure of the TIR domain of human TLR10, revealing a symmetric dimer in the asymmetric unit. The dimer interaction surface contains residues from the BB-loop, DD-loop, and alphaC-helix, which have previously been identified as important structural motifs for signaling in homologous TLR receptors. The interaction surface is extensive, containing a central hydrophobic patch surrounded by polar residues. The BB-loop forms a tight interaction, where a range of consecutive residues binds in a pocket formed by the reciprocal BB-loop and alphaC-helix. This pocket appears to be well suited for binding peptide substrates, which is consistent with the notion that peptides and peptide mimetics of the BB-loop are inhibitors for TLR signaling. The TLR10 structure is in good agreement with available biochemical data on TLR receptors and is likely to provide a good model for the physiological dimer.  相似文献   
230.
Ubiquinone (UQ) is an essential cofactor for respiratory metabolism. In yeast, mutation of the COQ7 gene results in the absence of UQ biosynthesis and demonstrates a role for this gene in the step leading to the hydroxylation of 5-demethoxyubiquinone. Intriguingly, the disruption of the corresponding gene in Caenorhabditis elegans, clk-1, results in a prolonged life span and a slowing of development. Because of the pleiotropic effect of this disruption, the small size of the protein, and the lack of obvious homology to other known hydroxylases, it has been suggested that Coq7 may be a regulatory or structural component in UQ biosynthesis, rather than acting as the hydroxylase per se. Here we identify Coq7 as belonging to a family of a di-iron containing oxidases/hydroxylases based on a conserved sequence motif for the iron ligands, supporting a direct function of Coq7 as a hydroxylase. We have cloned COQ7 from Pseudomonas aeruginosa and Thiobacillus ferrooxidans and show that indeed this gene complements an Escherichia coli mutant that lacks an unrelated 5-demethoxyubiquinone hydroxylase. Based on the similarities to other well studied di-iron carboxylate proteins, we propose a structural model for Coq7 as an interfacial integral membrane protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号