首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   35篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   11篇
  2012年   10篇
  2011年   23篇
  2010年   15篇
  2009年   4篇
  2008年   20篇
  2007年   14篇
  2006年   21篇
  2005年   12篇
  2004年   13篇
  2003年   13篇
  2002年   11篇
  2001年   14篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1984年   4篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
211.
Based on the unique susceptibility of the neonatal pulmonary circulation to hypoxia-induced structural alteration in vivo, we hypothesized that pulmonary artery (PA) smooth muscle cells (SMC) from the neonate would demonstrate enhanced growth capacity in vitro compared to adult cells. To test this hypothesis, matched neonatal and adult bovine SMC were tested for differences in size, serum-stimulated proliferation, susceptibility to senescence, resistance to serum withdrawal, autocrine growth capacity, and responsiveness to a locally important growth factor (insulin-like growth factor I; IGF-I) and an activator of protein kinase C (PKC) (phorbol 12-myristate 13-acetate; PMA). Neonatal PA SMC were smaller, grew faster, reached a higher plateau density, and were less susceptible to senescence. They were more resistant to serum withdrawal, had spontaneous autocrine growth capacity, and were more responsive to IGF-I, PMA, and the combination. Acquisition of increased growth factor responsiveness occurred between d5 and d14 after birth. Increased neonatal growth to IGF-I was associated with reduced IGF-I binding activity, implicating a post-receptor mechanism in enhanced responsiveness. Increased membrane-bound PKC catalytic activity was found in serum-deprived neonatal SMC. This basal increase was equal to that stimulated by 1 nM PMA in adult SMC, a pretreatment that caused these cells to become as responsive to IGF-I as untreated neonatal ones. We conclude that neonatal bovine PA SMC have marked enhancement of growth capacity in vitro, the acquisition of which is dependent on time from birth and is associated with auto-activation of PKC, These increased growth properties detected in vitro may contribute to the striking hyperplasia of neonatal PA SMC found in vivo following hypoxic exposure. © 1994 Wiley-Liss, Inc.  相似文献   
212.
ESCRTs     
  相似文献   
213.
Inosine triphosphatase (ITPA) is a ubiquitous key regulator of cellular non-canonical nucleotide levels. It breaks down inosine and xanthine nucleotides generated by deamination of purine bases. Its enzymatic action prevents accumulation of ITP and reduces the risk of incorporation of potentially mutagenic inosine nucleotides into nucleic acids. Here we describe the crystal structure of human ITPA in complex with its prime substrate ITP, as well as the apoenzyme at 2.8 and 1.1A, respectively. These structures show for the first time the site of substrate and Mg2+ coordination as well as the conformational changes accompanying substrate binding in this class of enzymes. Enzyme substrate interactions induce an extensive closure of the nucleotide binding grove, resulting in tight interactions with the base that explain the high substrate specificity of ITPA for inosine and xanthine over the canonical nucleotides. One of the dimer contact sites is made up by a loop that is involved in coordinating the metal ion in the active site. We predict that the ITPA deficiency mutation P32T leads to a shift of this loop that results in a disturbed affinity for nucleotides and/or a reduced catalytic activity in both monomers of the physiological dimer.  相似文献   
214.
We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.  相似文献   
215.
Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC) division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo.  相似文献   
216.
The early endosomal autoantigen EEA1 is essential for early endosomal membrane fusion. It binds to endosomes via a C-terminal domain (EEA1-CT). To identify proteins interacting with EEA1-CT, we screened a human brain library in the yeast two-hybrid system. Fourteen clones reacted strongly with EEA1-CT. Sequencing of these clones revealed that they all contained the ORF of the small GTPase, Rab5b. Further two-hybrid analysis suggested that Rab5b also interacts with the N-terminus of EEA1 (EEA1-NT). The interaction of both EEA1-CT and EEA1-NT with Rab5b was confirmed biochemically, and was found to be GTP dependent. Confocal immunofluorescence microscopy indicated that EEA1 colocalizes with Rab5b on early endosomes. Although EEA1-CT and EEA1-NT interacted strongly with wild-type Rab5b in the two-hybrid system, we detected no interaction with wild-type Rab5a, even though GTPase-deficient mutants of both Rab5a and Rab5b interacted equally well with EEA1. This difference could not be explained by differences in intrinsic GTPase activities, as these were found to be very similar. Instead, we speculate that yeast may contain a GTPase-activating protein (GAP) activity that stimulates Rab5a but not Rab5b. In contrast, pig brain cytosol was found to contain a GAP activity that stimulates the GTPase activity of Rab5b in preference to that of Rab5a. These data provide evidence that EEA1 interacts with both Rab5a and Rab5b, and that the GTPase activities of the two proteins are differentially regulated in vivo.  相似文献   
217.
Leukotriene inhibitors preferentially inhibit hypoxic pulmonary vasoconstriction in isolated rat lungs. If lipoxygenase products are involved in the hypoxic pressor response they might be produced during acute alveolar hypoxia and a leukotriene inhibitor should block both the vasoconstriction and leukotriene production that occurs in response to hypoxia. We investigated in isolated blood perfused rat lungs whether leukotriene C4 (LTC4) could be recovered from whole lung lavage fluid during ongoing hypoxic vasoconstriction. Lung lavage from individual rats had slow reacting substance (SRS)-like myotropic activity by guinea pig ileum bioassay. Pooled lavage (10 lungs) as analyzed by reverse phase high performance liquid chromatography had an ultraviolet absorbing component at the retention time for LTC4. At radioimmunoassay, and SRS myotropic activity by bioassay. LTC4 was not found during normoxic ventilation, during normoxic ventilation after a hypoxic pressor response, or during vasoconstriction elicited by KCl. Diethylcarbamazine citrate, a leukotriene synthesis blocker, concomitantly inhibited the hypoxic vasoconstriction and LTC4 production. Thus 5-lipoxygenase products may play a role in the sequence of events leading to hypoxic pulmonary vasoconstriction.  相似文献   
218.
To evaluate pulmonary vasodilation in a structurally altered pulmonary vascular bed, we gave endothelium-dependent (acetylcholine) and endothelium-independent [sodium nitroprusside, prostaglandin I2 (PGI2)] vasodilators in vivo and to isolated lobar pulmonary arteries from neonatal calves with severe pulmonary hypertension. Acetylcholine, administered by pulmonary artery infusion, decreased pulmonary arterial pressure from 120 +/- 7 to 71 +/- 6 mmHg and total pulmonary resistance from 29.4 +/- 2.6 to 10.4 +/- 0.9 mmHg.l-1.min without changing systemic arterial pressure (90 +/- 5 mmHg). Although both sodium nitroprusside and PGI2 lowered pulmonary arterial pressure to 86 +/- 4 and 96 +/- 4 mmHg, respectively, they also decreased systemic arterial pressure to 65 +/- 4 and 74 +/- 3 mmHg, respectively. Neither sodium nitroprusside nor PGI2 was as effective as acetylcholine at lowering total pulmonary resistance (18.0 +/- 3.6 and 19.1 +/- 2.2 mmHg.l-1.min, respectively). Right-to-left cardiac shunt through the foramen ovale was decreased by acetylcholine from 1.6 +/- 0.4 to 0.1 +/- 0.2 l/min but was not changed by sodium nitroprusside or PGI2. Isolated lobar pulmonary arteries from pulmonary hypertensive calves did not relax in response to acetylcholine, whereas isolated pulmonary arteries from age-matched control calves did relax in response to acetylcholine. Control and pulmonary hypertensive lobar pulmonary arteries relaxed equally well in response to sodium nitroprusside. We concluded that acetylcholine vasodilation was impaired in vitro in isolated lobar pulmonary arteries but was enhanced in vivo in resistance pulmonary arteries in neonatal calves with pulmonary hypertension.  相似文献   
219.
Anumula  KR; Dhume  ST 《Glycobiology》1998,8(7):685-694
Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2- aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods combined with mass spectrometry (MALDI-TOF) can provide an effective technology for analyzing a wide repertoire of oligosaccharide structures and for determining the action of both transferases and glycosidases.   相似文献   
220.
MOTIVATION: Molecular biology databases hold a large number of empirical facts about many different aspects of biological entities. That data is static in the sense that one cannot ask a database 'What effect has protein A on gene B?' or 'Do gene A and gene B interact, and if so, how?'. Those questions require an explicit model of the target organism. Traditionally, biochemical systems are modelled using kinetics and differential equations in a quantitative simulator. For many biological processes however, detailed quantitative information is not available, only qualitative or fuzzy statements about the nature of interactions. RESULTS: We designed and implemented a qualitative simulation model of lambda phage growth control in Escherichia coli based on the existing simulation environment QSim. Qualitative reasoning can serve as the basis for automatic transformation of contents of genomic databases into interactive modelling systems that can reason about the relations and interactions of biological entities.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号