首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   35篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   11篇
  2012年   10篇
  2011年   23篇
  2010年   15篇
  2009年   4篇
  2008年   20篇
  2007年   14篇
  2006年   21篇
  2005年   12篇
  2004年   13篇
  2003年   13篇
  2002年   11篇
  2001年   14篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1984年   4篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
111.
The tumor suppressor activity of Beclin 1 (BECN1), a subunit of class III phosphatidylinositol 3-kinase complex, has been attributed to its regulation of apoptosis and autophagy. Here, we identify FYVE-CENT (ZFYVE26), a phosphatidylinositol 3-phosphate binding protein important for cytokinesis, as a novel interacting protein of Beclin 1. A mutation in FYVE-CENT (R1945Q) associated with breast cancer abolished the interaction between FYVE-CENT and Beclin 1, and reduced the localization of these proteins at the intercellular bridge during cytokinesis. Breast cancer cells containing the FYVE-CENT R1945Q mutation displayed a significant increase in cytokinetic profiles and bi-multinuclear phenotype. Both Beclin 1 and FYVE-CENT were found to be downregulated in advanced breast cancers. These findings suggest a positive feedback loop for recruitment of FYVE-CENT and Beclin 1 to the intercellular bridge during cytokinesis, and reveal a novel potential tumor suppressor mechanism for Beclin 1.  相似文献   
112.
113.
Owing to their role as vectors of malaria parasites, species of the Anopheles maculipennis complex (Diptera: Culicidae) Meigen were intensively studied in the past, but with the disappearance of malaria in Germany in the middle of the last century, the interest in this field of research declined. A comprehensive ecological analysis of the current species distribution for Germany is lacking. Between 2010 and 2013, a total of 1445 mosquitoes of the An. maculipennis complex were collected at 72 different sites in Germany. The samples comprise 722 single individuals as well as 723 individuals in 90 pools of up to 25 mosquitoes. All samples were analysed with newly developed species‐specific qPCR assays for the identification of the four German species using nucleotide differences within the internal transcribed spacer 2 (ITS2) ribosomal DNA. All gathered data were used for species distribution modelling. The overall prevalence of An. messeae s.l. was highest with 98.89% of all pools; An. daciae with 6.93% of all individuals and An. messeae s.s. with 69.53%. The prevalence of the other two species was relatively low: An. maculipennis s.s. with 13.30% of all individuals (6.67% of all pools) and An. atroparvus with 1.80% of all individuals (1.11% of all pools).  相似文献   
114.
Smooth muscle cell (SMC) hyperplasia is an important component of vascular remodeling in chronic hypoxic pulmonary hypertension. The mechanisms underlying SMC proliferation in the remodeling process are poorly understood, but may involve insulin-like growth factor I (IGF-I). This study investigates the potential proliferative effects of IGF-I on SMC cultured from the pulmonary arteries (PA) of neonatal calves. We hypothesized that IGF-I stimulates PA SMC proliferation through a protein kinase C (PKC)-independent pathway, but that PKC activation would augment this proliferative response. Incorporation of 3H-thymidine was used as an index of cellular proliferation, and was correlated with subsequent changes in cell counts. Under serum-free conditions, IGF-I (100 ng/ml) induced a 6-fold increase in thymidine incorporation by quiescent PA SMC. This stimulation was not blocked by dihydrosphingosine, an inhibitor of PKC activation. Phorbol myristate acetate (PMA) (1 nM), a membrane-permeable PKC activator, induced a 12-fold increase in thymidine incorporation which was 70% inhibited by dihydrosphingosine. Co-incubation with IGF-I and PMA caused a 60-fold increase in thymidine incorporation, which was 30% inhibited by dihydrosphingosine. This synergistic increase in thymidine incorporation was associated with a subsequent significant increase in cell number. PKC-downregulated cells (1,000 nM PMA x 30 hr) proliferated in response to IGF-I but not PMA, and did not demonstrate synergism with the combination of IGF-I and PMA. The threshold concentrations of IGF-I and PMA for synergism were approximately 1 ng/ml and 1 pM, respectively. We conclude that IGF-I stimulates neonatal PA SMC proliferation via a PKC-independent pathway, and that trace amounts of PKC activators are capable of synergistically augmenting this response. We speculate that the synergistic stimulation of SMC proliferation by IGF-I and PKC activators may play an important role in hypertensive pulmonary vascular remodeling.  相似文献   
115.
The B-fragment of diphtheria toxin binds to cell surface receptors and facilitates entry of the enzymatically active A-fragment into the cytosol. The roles of the amino- and carboxyl-terminal regions of the B-fragment in interactions with the cell membrane were studied by measuring specific binding, insertion into membranes at low pH, and formation of cation-selective channels, as well as by toxicity measurements after association with active A-fragment. Deletion of the amino-terminal 12 amino acids of the B-fragment did not affect its ability to bind to receptors and to form ion channels at low pH, whereas both abilities were strongly impaired when one more amino acid (Trp206) was removed. Replacement of the amino-terminal 31 residues with an amphipathic sequence from human apolipoprotein A1 restored receptor binding but not ion channel formation. The binding to cells was virtually abolished when 9 residues were deleted from the carboxyl terminus. Deletion of only 4 residues or extension by 12 residues did not prevent specific binding, but reduced insertion, channel formation, and toxicity. Those deletions that reduced receptor binding ability increased the trypsin sensitivity of the B-fragment. The results indicate that the amino- and carboxyl-terminal regions of diphtheria toxin B-fragment are important for receptor binding, possibly because they contribute to keep the B-fragment in a binding-competent conformation. Small alterations in the carboxyl-terminal end reduced insertion, channel formation, and toxicity more than the ability of the B-fragment to bind to cells.  相似文献   
116.
The mechanistic target of rapamycin, mTOR, is a protein kinase that integrates environmental and nutritional inputs into regulation of cell growth and metabolism. Key outputs of mTOR signalling occur from the lysosome membrane in the form of the multi‐subunit mTOR complex 1 (mTORC1), which phosphorylates multiple targets. While class I phosphoinositide kinase (PI3K‐I) is a well‐known activator of mTORC1, a recent paper (Marat et al, 2017) shows that a class II PI3K with a different substrate specificity, PI3K‐C2β, serves to inhibit mTORC1 on lysosomes under conditions of growth factor deprivation.  相似文献   
117.
Early endosomal antigen 1 (EEA1) is a cytosolic protein that specifically binds to early endosomal membranes where it has a crucial role in the tethering process leading to homotypic endosome fusion. Green fluorescent protein-tagged EEA1 (EEA1-GFP) was bound to the endosomal membrane throughout the cell cycle, and measurements using fluorescent recovery after photobleaching showed two fractions: one rapidly exchanging with the cytosolic pool, and the other with a long half-life. The exchange consists of a release and binding process, and we have separated these two by using GFP and photoactivable GFP. The release rate was identical to the exchange rate, showing that the dissociation characteristics determine the cycling of this molecule. During mitosis, we found that the dissociation rate was markedly accelerated and, in addition, the long-lived fraction was markedly reduced. This indicates that a fusion arrest in mitosis is not the result of EEA1 not binding to early endosomes, but rather due to the marked shift in membrane-binding characteristics. This might be a general mechanism to fine-tune and control tethering and fusion of early endosomes.  相似文献   
118.
Salmonella invade nonphagocytic cells by eliciting their own internalization; upon contact with the host cell, the bacteria induce membrane ruffles highly localized to the point of contact between the invading bacterium and the host cell. The bacterium is then internalized into an unusual cytosolic organelle, the Salmonella-containing vacuole (SCV). Early endosomal markers (including EEA1) have recently been shown to be associated with the SCV shortly after invasion. EEA1, a protein involved in early endosome fusion, is recruited to early endosomal membranes in part by the interaction between its FYVE finger and phosphatidylinositol 3-phosphate [PtdIns(3)P], a characteristic lipid of early endosomes. This suggests a possible role for PtdIns(3)P during Salmonella infection. To investigate this, we generated a highly specific probe for PtdIns(3)P that was used to follow invasion of Salmonella in nonphagocytic cells. Here, we show that PtdIns(3)P is present on the membranes of SCVs shortly after invasion and also that it is present on the membrane ruffles produced immediately prior to invasion. We also show that this specific probe cycles on and off the membranes of nascent SCVs even when PtdIns 3-kinase activity is inhibited, demonstrating that invading Salmonella influence the composition of the membranes that envelop them during invasion.  相似文献   
119.
The biogenesis of multivesicular endosomes   总被引:1,自引:0,他引:1  
  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号