首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   44篇
  国内免费   1篇
  559篇
  2022年   4篇
  2021年   9篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   20篇
  2015年   28篇
  2014年   35篇
  2013年   30篇
  2012年   42篇
  2011年   32篇
  2010年   15篇
  2009年   15篇
  2008年   21篇
  2007年   19篇
  2006年   19篇
  2005年   25篇
  2004年   24篇
  2003年   16篇
  2002年   13篇
  2001年   8篇
  2000年   5篇
  1999年   10篇
  1998年   6篇
  1997年   9篇
  1996年   6篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1989年   5篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   8篇
  1983年   8篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   11篇
  1977年   4篇
  1976年   4篇
  1975年   8篇
  1974年   4篇
  1973年   2篇
  1967年   2篇
  1966年   4篇
  1965年   3篇
  1959年   2篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
21.
Functional magnetic resonance imaging (fMRI) measures brain activity by detecting the blood-oxygen-level dependent (BOLD) response to neural activity. The BOLD response depends on the neurovascular coupling, which connects cerebral blood flow, cerebral blood volume, and deoxyhemoglobin level to neuronal activity. The exact mechanisms behind this neurovascular coupling are not yet fully investigated. There are at least three different ways in which these mechanisms are being discussed. Firstly, mathematical models involving the so-called Balloon model describes the relation between oxygen metabolism, cerebral blood volume, and cerebral blood flow. However, the Balloon model does not describe cellular and biochemical mechanisms. Secondly, the metabolic feedback hypothesis, which is based on experimental findings on metabolism associated with brain activation, and thirdly, the neurotransmitter feed-forward hypothesis which describes intracellular pathways leading to vasoactive substance release. Both the metabolic feedback and the neurotransmitter feed-forward hypotheses have been extensively studied, but only experimentally. These two hypotheses have never been implemented as mathematical models. Here we investigate these two hypotheses by mechanistic mathematical modeling using a systems biology approach; these methods have been used in biological research for many years but never been applied to the BOLD response in fMRI. In the current work, model structures describing the metabolic feedback and the neurotransmitter feed-forward hypotheses were applied to measured BOLD responses in the visual cortex of 12 healthy volunteers. Evaluating each hypothesis separately shows that neither hypothesis alone can describe the data in a biologically plausible way. However, by adding metabolism to the neurotransmitter feed-forward model structure, we obtained a new model structure which is able to fit the estimation data and successfully predict new, independent validation data. These results open the door to a new type of fMRI analysis that more accurately reflects the true neuronal activity.  相似文献   
22.
23.
24.
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants.  相似文献   
25.
The methanotrophic bacterium Methylococcus capsulatus is capable of assimilating methane and oxygen into protein-rich biomass, however, the diverse metabolism of the microorganism also allows for several undesired cometabolic side-reactions to occur. In this study, the ammonia cometabolism in Methylococcus capsulatus is investigated using pulse experiments. Surprisingly Methylococcus capsulatus oxidizes ammonia to nitrate through a yet unknown mechanism and fixes molecular nitrogen even at a high dissolved oxygen tension. The observed phenomena can be modeled using 14 ordinary differential equations and 18 kinetic parameters, of which 6 were revealed by Morris screening to be identifiable from the experimental data. Monte Carlo simulations showed that the model was robust and accurate even with uncertainty in the parameter values as confirmed by statistical error analysis.  相似文献   
26.
The murine 3T3-L1 preadipocyte cell line is well characterized for its capacity to undergo differentiation into adipocytes under appropriate hormonal stimulation. p107, a member of the retinoblastoma tumor suppressor gene family has been shown to be dramatically upregulated during the early requisite clonal expansion phase of 3T3-L1 adipogenesis; however, a functional consequence has yet to be described. A phosphorothioate antisense RNA approach was utilized to determine if inhibition of p107 expression would block or perturb adipocyte differentiation. A series of three phosphorothioate oligonucleotides in antisense orientation was generated, designated AS1, AS2, and AS3 along with a sense control oligonucleotide complementary to AS1 and added to postconfluent cells at a concentration of 20 and 50 microM throughout hormonally stimulated differentiation. Treatment of cells with either concentration of the sense, AS1, AS2, or 20 microM AS3 oligonucleotides had little effect on either Oil Red O lipid accumulation or induction of p107 protein levels. In contrast, treatment with 50 microM AS3 inhibited the increase in p107 protein levels and led to a complete block in differentiation as detected by Oil Red O lipid accumulation and inhibition of adipocyte-specific mRNA expression. In addition, treatment with AS3 led to a significant inhibition of cellular proliferation associated with clonal expansion. Combined, these results provide strong evidence supporting a functional role for p107 in 3T3-L1 adipocyte differentiation.  相似文献   
27.
Surface plasmon resonance with an alkane L1 chip was used to investigate the binding of uropathogenic Escherichia coli, carrying adhesion receptors, to globotetraosylceramide (globoside; GbO4). The immobilization of globoside was reproducible and resulted in a stable globoside layer on the L1 chip. The data indicated that the globoside-immobilized L1 chip could be used for studying interactions with live or chemically fixed E. coli. The results indicated that the dissociation time was significantly reduced in glutaraldehyde-fixed E. coli as compared to living cells. Overall, the report demonstrates the significance of the L1 chip in terms of sensitivity, specificity, handling, and speed when studying globoside/E. coli interactions. This model may assist in screening for compounds that can inhibit the binding of uropathogenic E. coli to glycolipid ligands on target cells.  相似文献   
28.
Two new 5'-untranslated region (5'UTR) exons were identified in the human gene for the lymphocyte-specific endonuclease recombination activating gene-1 (RAG1) required for the somatic recombination yielding functional Ag receptors. These 5'UTR exons were used in three different splice forms by jejunal lymphocytes of the T cell lineage. RAG1 mRNA containing the previously described 5'UTR exon was not expressed in these cells. Conversely, one of the new 5'UTR exons was not expressed in thymus. The new RAG1 mRNA splice forms were all expressed in immature T cells (CD2(+)CD7(+)CD3(-)). This cell population also expressed high levels of mRNA for the pre-T alpha-chain. In situ hybridization demonstrated jejunal cells expressing the new splice forms of RAG1 mRNA, both intraepithelially and in lamina propria. Pre-T alpha-chain mRNA-expressing cells were detected at the same sites. These results strongly suggest ongoing TCR gene rearrangement in human small intestinal mucosa, yielding T cells specially adapted for this environment. This seems to be achieved by two parallel processes, extrathymic T cell development and peripheral Ag-driven TCR editing.  相似文献   
29.
The steady-state behavior of a glucose-limited, aerobic, continuous cultivation of Saccharomyces cerevisiae CEN.PK113-7D was investigated around the critical dilution rate. Oxido-reductive steady states were obtained at dilution rates up to 0.09 h(-1) lower than the critical dilution rate by operating the bioreactor as a productostat, where the dilution rate was controlled on the basis of an ethanol measurement. Thus, the experimental investigations revealed that multiple steady states exist in a region of dilution rates below the critical dilution rate. The existence of multiple steady states was attributed to two distinct physiological effects occurring when growth changed from oxidative to oxido-reductive: (i) a decrease in the efficiency of ATP production and utilization (at ethanol concentrations below 3 g/L) and (ii) repression of the oxidative metabolism (at higher ethanol concentrations). The first effect was best observed at low ethanol concentrations, where multiple steady states were observed even when no repression of the oxidative metabolism was evident, i.e., the oxidative capacity was constant. However, at higher ethanol concentrations repression of the oxidative metabolism was observed (the oxidative capacity decreased), and this resulted in a broader range of dilution rates where multiple steady states could be found.  相似文献   
30.
Clinically observed incomplete mitral leaflet coaptation was reproduced in vitro by altering the balance of the chordal tethering and chordal coapting force components. Mitral leaflet coaptation geometry was distorted by changes of the spatial relations between the papillary muscles and the mitral valve as well as hemodynamics. Mitral leaflet malalignment was accentuated by a redistribution of the chordal tethering and coapting force components. For the overall assessment of systolic mitral leaflet configuration in functional mitral regurgitation it is important to consider the interaction between chordal restraint and an altered mitral leaflet coaptation geometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号