首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
  2021年   2篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1986年   1篇
  1977年   1篇
  1967年   2篇
排序方式: 共有56条查询结果,搜索用时 13 毫秒
41.

Background

Major histocompatibility complex (MHC) class II molecules play crucial roles in immune activation by presenting foreign peptides to antigen-specific T helper cells and thereby inducing adaptive immune responses. Although adaptive immunity is a highly effective defense system, it takes several days to become fully operational and needs to be triggered by danger-signals generated during the preceding innate immune response. Here we show that MHC class II molecules synergize with Toll-like receptor (TLR) 2 and TLR4 in inducing an innate immune response.

Methodology/Principal Findings

We found that co-expression of MHC class II molecules and TLR2 or TLR4 in human embryonic kidney (HEK) cells 293 leads to enhanced production of the anti-microbial peptide human-β-defensin (hBD) 2 after treatment with TLR2 stimulus bacterial lipoprotein (BLP) or TLR4 ligand lipopolysaccharide (LPS), respectively. Furthermore, we found that peritoneal macrophages of MHC class II knock-out mice show a decreased responsiveness to TLR2 and TLR4 stimuli compared to macrophages of wild-type mice. Finally, we show that MHC class II molecules are physically and functionally associated with TLR2 in lipid raft domains of the cell membrane.

Conclusions/Significance

These results demonstrate that MHC class II molecules are, in addition to their central role in adaptive immunity, also implicated in generating optimal innate immune responses.  相似文献   
42.
43.
A new aerobic bacterium was isolated from the sediment of a freshwater pond close to a contaminated site at Amponville (France). It was enriched in a fixed-bed reactor fed with 2,6-dichlorophenol (2,6-DCP) as the sole carbon and energy source at pH 7.5 and room temperature. The degradation of 2,6-DCP followed Monod kinetics at low initial concentrations. At concentrations above 300 μM (50 mg · liter−1), 2,6-DCP increasingly inhibited its own degradation. The base sequence of the 16S ribosomal DNA allowed us to assign the bacterium to the genus Ralstonia (formerly Alcaligenes). The substrate spectrum of the bacterium includes toluene, benzene, chlorobenzene, phenol, and all four ortho- and para-substituted mono- and dichlorophenol isomers. Substituents other than chlorine prevented degradation. The capacity to degrade 2,6-DCP was examined in two fixed-bed reactors. The microbial population grew on and completely mineralized 2,6-DCP at 2,6-DCP concentrations up to 740 μM in continuous reactor culture supplied with H2O2 as an oxygen source. Lack of peroxide completely stopped further degradation of 2,6-DCP. Lowering the acid-neutralizing capacity of the medium to 1/10th the original capacity led to a decrease in the pH of the effluent from 7 to 6 and to a significant reduction in the degradation activity. A second fixed-bed reactor successfully removed low chlorophenol concentrations (20 to 26 μM) with hydraulic residence times of 8 to 30 min.  相似文献   
44.
The selectivity of Ca2+ over Na+ is approximately 3.3-fold larger in cGMP-gated channels of cone photoreceptors than in those of rods when measured under saturating cGMP concentrations, where the probability of channel opening is 85-90%. Under physiological conditions, however, the probability of opening of the cGMP-gated channels ranges from its largest value in darkness of 1-5% to essentially zero under continuous, bright illumination. We investigated the ion selectivity of cGMP-gated channels as a function of cyclic nucleotide concentration in membrane patches detached from the outer segments of rod and cone photoreceptors and have found that ion selectivity is linked to gating. We determined ion selectivity relative to Na+ (PX/PNa) from the value of reversal potentials measured under ion concentration gradients. The selectivity for Ca2+ over Na+ increases continuously as the probability of channel opening rises. The dependence of PCa/PNa on cGMP concentration, in both rods and cones, is well described by the same Hill function that describes the cGMP dependence of current amplitude. At the cytoplasmic cGMP concentrations expected in dark-adapted intact photoreceptors, PCa/PNa in cone channels is approximately 7.4-fold greater than that in rods. The linkage between selectivity and gating is specific for divalent cations. The selectivity of Ca2+ and Sr2+ changes with cGMP concentration, but the selectivity of inorganic monovalent cations, Cs+ and NH4+, and organic cations, methylammonium+ and dimethylammonium+, is invariant with cGMP. Cyclic nucleotide-gated channels in rod photoreceptors are heteromeric assemblies of alpha and beta subunits. The maximal PCa/PNa of channels formed from alpha subunits of bovine rod channels is less than that of heteromeric channels formed from alpha and beta subunits. In addition, Ca2+ is a more effective blocker of channels formed by alpha subunits than of channels formed by alpha and beta subunits. The cGMP-dependent shift in divalent cation selectivity is a property of alphabeta channels and not of channels formed from alpha subunits alone.  相似文献   
45.
Cyanophycin [multi-L-arginyl-poly(L-aspartic acid) (CGP)] was, for the first time, produced in yeast. As yeasts are very important production organisms in biotechnology, it was determined if CGP can be produced in two different strains of Saccharomyces cerevisiae. The episomal vector systems pESC (with the galactose-inducible promoter GAL1) and pYEX-BX (with the copper ion-inducible promoter CUP1) were chosen to express the cyanophycin synthetase gene from the cyanobacterium Synechocystis sp. strain PCC 6308 (cphA(6308)) in yeast. Expression experiments with transgenic yeasts revealed that the use of the CUP1 promoter is much more efficient for CGP production than the GAL1 promoter. As observed by electrophoresis of isolated CGP in sodium dodecyl sulfate-polyacrylamide gels, the yeast strains produced two different types of polymer: the water-soluble and the water-insoluble CGP were observed as major and minor forms of the polymer, respectively. A maximum CGP content of 6.9% (wt/wt) was detected in the cells. High-performance liquid chromatography analysis showed that the isolated polymers consisted mainly of the two amino acids aspartic acid and arginine and that, in addition, a minor amount (2 mol%) of lysine was present. Growth of transgenic yeasts in the presence of 15 mM lysine resulted in an incorporation of up to 10 mol% of lysine into CGP. Anti-CGP antibodies generated against CGP isolated from Escherichia coli TOP10 harboring cphA(6308) reacted with insoluble CGP but not with soluble CGP, if applied in Western or dot blots.  相似文献   
46.
5-Aza-2′-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, exerts antitumor activity through induction of cell cycle arrest, apoptosis and DNA damage. In this study, we showed that MHC class I-related chain B (MICB), a ligand of the NKG2D receptor expressed by natural killer cells and activated CD8(+) T cells, was upregulated following 5-aza-dC treatment. The upregulation of MICB was accompanied by promoter DNA demethylation and DNA damage. Furthermore, the upregulation of MICB was partially prevented by pharmacological or genetic inhibition of ataxia telangiectasia mutated (ATM) kinase. Our results suggest that promoter DNA demethylation, in combination with DNA damage, contribute to the upregulation of MICB induced by 5-aza-dC.  相似文献   
47.
Activation of V gamma 9V delta 2 T cells by NKG2D   总被引:5,自引:0,他引:5  
Human Vgamma9 Vdelta2 T cells recognize phosphorylated nonpeptide Ags (so called phosphoantigens), certain tumor cells, and cells treated with aminobisphosphonates. NKG2D, an activating receptor for NK cells, has been described as a potent costimulatory receptor in the Ag-specific activation of gammadelta and CD8 T cells. This study provides evidence that Vgamma9 Vdelta2 T cells may also be directly activated by NKG2D. Culture of PBMC with immobilized NKG2D-specific mAb or NKG2D ligand MHC class I related protein A (MICA) induces the up-regulation of CD69 and CD25 in NK and Vgamma9 Vdelta2 but not in CD8 T cells. Furthermore, NKG2D triggers the production of TNF-alpha but not of IFN-gamma, as well as the release of cytolytic granules by Vgamma9 Vdelta2 T cells. Purified Vgamma9 Vdelta2 T cells kill MICA-transfected RMA mouse cells but not control cells. Finally, DAP10, which mediates NKG2D signaling in human NK cells, was detected in resting and activated Vgamma9 Vdelta2 T cells. These remarkable similarities in NKG2D function in NK and Vgamma9 Vdelta2 T cells may open new perspectives for Vgamma9 Vdelta2 T cell-based immunotherapy, e.g., by Ag-independent killing of NKG2D ligand-expressing tumors.  相似文献   
48.
The goals of this study were 2-fold: 1) to determine whether stimulation of Eph B4 receptors promotes microvascular endothelial cell migration and/or proliferation, and 2) to elucidate signaling pathways involved in these responses. The human endothelial cells used possessed abundant Eph B4 receptors with no endogenous ephrin B2 expression. Stimulation of these receptors with ephrin B2/Fc chimera resulted in dose- and time-dependent phosphorylation of Akt. These responses were inhibited by LY294002 and ML-9, blockers of phosphatidylinositol 3-kinase (PI3K) and Akt, respectively. Eph B4 receptor activation increased proliferation by 38%, which was prevented by prior blockade with LY294002, ML-9, and inhibitors of protein kinase G (KT5823) and MEK (PD98059). Nitrite levels increased over 170% after Eph B4 stimulation, indicating increased nitric oxide production. Signaling of endothelial cell proliferation appears to be mediated by a PI3K/Akt/endothelial nitric-oxide synthase/protein kinase G/mitogen-activated protein kinase cascade. Stimulation with ephrin B2 also increased migration by 63% versus controls. This effect was inhibited by blockade with PP2 (Src inhibitor), LY294002 or ML-9 but was unaffected by the PKG and MEK blockers. Eph B4 receptor stimulation increased activation of both matrix metalloproteinase-2 and -9. The results from these studies indicate that Eph B4 stimulates migration and proliferation and may play a role in angiogenesis.  相似文献   
49.
Regional influences of parasympathetic and sympathetic innervation on choroidal blood flow were investigated in anesthetized rats. Parasympathetic pterygopalatine neurons were activated by electrically stimulating the superior salivatory nucleus, whereas sympathetic neurons were activated by cervical sympathetic trunk stimulation and uveal blood flow was measured by laser Doppler flowmetry. Parasympathetic stimulation increased flux in the anterior choroid and nasal vortex veins but not in the posterior choroid. Vasodilation was blocked completely by the neuronal nitric oxide synthase inhibitor 1-(2-trifluoromethylphenyl)imidazole but was unaffected by atropine. Sympathetic stimulation decreased flux in all regions, and this was blocked by prazosin. Parasympathetic stimulation did not affect vasoconstrictor responses to sympathetic stimulation in the posterior choroid but attenuated the decrease in blood flow through the anterior choroid and vortex veins via a nitrergic mechanism. We conclude that sympathetic alpha-noradrenergic vasoconstriction occurs throughout the choroid, whereas parasympathetic nitrergic vasodilation plays a selective role in modulating blood flow in anterior tissues of the eye.  相似文献   
50.
Previous investigations have demonstrated a marked effect of soy protein on multiple physiological parameters associated with the metabolic syndrome (MS). This preliminary study investigated the physiological effects of soy-based diets on cardiovascular risk in a unique rodent model that reflects early stages of MS. Briefly, lean male SHHF (+/cp) rats were randomly assigned to the following treatment groups: casein (control, C); low-isoflavone (LIS) soy protein isolate; high-isoflavone (HIS) soy protein isolate; or C+ 0.01 % rosiglitazone (CR). Rats were fed for thirty-six weeks. Liver weight, heart weight, total plasma cholesterol, fasting blood glucose were lower in soy-fed animals compared to control (p < 0.01). Body weight, kidney weight, alanine aminotransferase (ALT), fasting plasma insulin, and homeostasis model assessment (HOMA) score were also lower in LIS-fed rodents (p < 0.05) compared to casein treatment. All diet groups exhibited lower urine protein (p < 0.01) and small arteriole content (p < 0.05) compared to controls. LIS feed had a slightly more profound influence on body weight, liver metabolism, and insulin sensitivity. However, both soy diets exhibited marked improvements over a casein-based diet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号