首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1168篇
  免费   212篇
  1380篇
  2017年   11篇
  2016年   18篇
  2015年   31篇
  2014年   37篇
  2013年   36篇
  2012年   40篇
  2011年   45篇
  2010年   32篇
  2009年   24篇
  2008年   34篇
  2007年   48篇
  2006年   52篇
  2005年   46篇
  2004年   39篇
  2003年   32篇
  2002年   41篇
  2001年   24篇
  2000年   31篇
  1999年   27篇
  1998年   14篇
  1997年   13篇
  1996年   11篇
  1995年   13篇
  1993年   10篇
  1992年   24篇
  1991年   29篇
  1990年   23篇
  1989年   29篇
  1988年   32篇
  1987年   28篇
  1986年   27篇
  1985年   26篇
  1984年   25篇
  1983年   15篇
  1982年   19篇
  1981年   21篇
  1980年   11篇
  1979年   26篇
  1978年   20篇
  1977年   23篇
  1976年   11篇
  1975年   20篇
  1974年   39篇
  1973年   28篇
  1972年   16篇
  1971年   13篇
  1970年   9篇
  1969年   9篇
  1967年   11篇
  1966年   19篇
排序方式: 共有1380条查询结果,搜索用时 15 毫秒
111.
It is now well established that bacteria communicate through the secretion and uptake of small diffusable molecules. These chemical cues, or signals, are often used by bacteria to coordinate phenotypic expression and this mechanism of regulation presumably provides them with a competitive advantage in their natural environment. Examples of coordinated behaviors of marine bacteria which are regulated by signals include swarming and exoprotease production, which are important for niche colonisation or nutrient acquisition (e.g. protease breakdown of substrate). While the current focus on bacterial signalling centers on N-Acylated homoserine lactones, the quorum sensing signals of gram-negative bacteria, these are not the only types of signals used by bacteria. Indeed, there appears to be many other types of signals produced by bacteria and it also appears that a bacterium may use multiple classes of signals for phenotypic regulation. Recent work in the area of marine microbial ecology has led to the observation that some marine eukaryotes secrete their own signals which compete with the bacterial signals and thus inhibit the expression of bacterial signalling phenotypes. This type of molecular mimicry has been well characterised for the interaction of marine prokaryotes with the red alga, Delisea pulchra.  相似文献   
112.
To elucidate the general constraints imposed on the structure of the D- and T-loops in functional tRNAs, active suppressor tRNAs were selected in vivo from a combinatorial tRNA gene library in which several nucleotide positions of these loops were randomized. Analysis of the nucleotide sequences of the selected clones demonstrates that among the randomized nucleotides, the most conservative are nucleotides 54 and 58 in the T-loop. In most cases, they make the combination U54-A58, which allows the formation of the normal reverse Hoogsteen base pair. Surprisingly, other clones have either the combination G54-A58 or G54-G58. However, molecular modeling shows that these purine–purine base pairs can very closely mimic the reverse Hoogsteen base pair U-A and thus can replace it in the T-loop of a functional tRNA. This places the reverse Hoogsteen base pair 54-58 as one of the most important structural aspects of tRNA functionality. We suggest that the major role of this base pair is to preserve the conformation of dinucleotide 59–60 and, through this, to maintain the general architecture of the tRNA L-form.  相似文献   
113.
We have characterized a novel mutation of the human AR, G577R, associated with partial androgen insensitivity syndrome. G577 is the first amino acid of the P box, a region crucial for the selectivity of receptor/DNA interaction. Although the equivalent amino acid in the GR (also Gly) is not involved in DNA interaction, the residue at the same position in the ER (Glu) interacts with the two central base pairs in the PuGGTCA motif. Using a panel of 16 palindromic probes that differ in these base pairs (PuGNNCA) in gel shift experiments with either the AR DNA-binding domain or the full length receptor, we observed that the G577R mutation does not induce binding to probes that are not recognized by the wild-type AR. However, binding to the four PuGNACA elements recognized by the wild-type AR was affected to different degrees, resulting in an altered selectivity of DNA response element recognition. In particular, AR-G577R did not interact with PuGGACA palindromes. Modeling of the complex between mutant AR and PuGNACA motifs indicates that the destabilizing effect of the mutation is attributable to a steric clash between the C beta of Arg at position 1 of the P box and the methyl group of the second thymine residue in the TGTTCPy arm of the palindrome. In addition, the Arg side chain can interact with G or T at the next position (PuGCACA and PuGAACA elements, respectively). The presence of C is not favorable, however, because of incompatible charges, abrogating binding to the PuGGACA element. Transactivation of several natural or synthetic promoters containing PuGGACA motifs was drastically reduced by the G577R mutation. These data suggest that androgen target genes may be differentially affected by the G577R mutation, the first natural mutation characterized that alters the selectivity of the AR/DNA interaction. This type of mutation may thus contribute to the diversity of phenotypes associated with partial androgen insensitivity syndrome.  相似文献   
114.
115.
116.
Protein kinase C isoforms comprise a family of structurally related serine/threonine kinases that are activated by second messenger molecules formed via receptor-dependent activation of phospholipase C. Cardiomyocytes co-express multiple protein kinase C isoforms which play key roles in a spectrum of adaptive and maladaptive cardiac responses. This chapter focuses on the structural features, modes of activation, and distinct cellular actions of individual PKC isoforms in the heart. Particular emphasis is placed on progress that comes from studies in molecular models of PKC isoform overexpression or gene deletion in mice. Recent studies that distinguish the functional properties of novel PKC isoforms (PKC and PKC) from each other, and from the actions of the conventional PKC isoforms, and suggest that these proteins may play a particularly significant role in pathways leading to cardiac growth and/or cardioprotection also are considered.  相似文献   
117.
118.
The heavy chain of dynein forms a globular motor domain that tightly couples the ATP-cleavage region and the microtubule-binding site to transform chemical energy into motion along the cytoskeleton. Here we show that, in the fungus Ustilago maydis, two genes, dyn1 and dyn2, encode the dynein heavy chain. The putative ATPase region is provided by dyn1, while dyn2 includes the predicted microtubule-binding site. Both genes are located on different chromosomes, are transcribed into independent mRNAs and are translated into separate polypeptides. Both Dyn1 and Dyn2 co-immunoprecipitated and co-localized within growing cells, and Dyn1-Dyn2 fusion proteins partially rescued mutant phenotypes, suggesting that both polypeptides interact to form a complex. In cell extracts the Dyn1-Dyn2 complex dissociated, and microtubule affinity purification indicated that Dyn1 or associated polypeptides bind microtubules independently of Dyn2. Both Dyn1 and Dyn2 were essential for cell survival, and conditional mutants revealed a common role in nuclear migration, cell morphogenesis and microtubule organization, indicating that the Dyn1-Dyn2 complex serves multiple cellular functions.  相似文献   
119.
Mouse Staufen (mStau) is a double-stranded RNA-binding protein associated with polysomes and the rough endoplasmic reticulum (RER). We describe a novel endogenous isoform of mStau (termed mStau(i)) which has an insertion of six amino acids within dsRBD3, the major double-stranded RNA (dsRNA)-binding domain. With a structural change of the RNA-binding domain, this conserved and widely distributed isoform showed strongly impaired dsRNA-binding ability. In transfected cells, mStau(i) exhibited the same tubulovesicular distribution (RER) as mStau when weakly expressed; however, when overexpressed, mStau(i) was found in large cytoplasmic granules. Markers of the RER colocalized with mStau(i)-containing granules, showing that overexpressed mStau(i) could still be associated with the RER. Cotransfection of mStau(i) with mStau relocalized overexpressed mStau(i) to the reticular RER, suggesting that they can form a complex on the RER and that a balance between these isoforms is important to achieve proper localization. Coimmunoprecipitation demonstrated that the two mStau isoforms are components of the same complex in vivo. Analysis of the immunoprecipitates showed that mStau is a component of an RNA-protein complex and that the association with mStau(i) drastically reduces the RNA content of the complex. We propose that this new isoform, by forming a multiple-isoform complex, regulates the amount of RNA in mStau complexes in mammalian cells.  相似文献   
120.
The structure of polymer-decorated phospholipid monolayers at the solid-solution interface was investigated using neutron reflectometry. The monolayers were composed of distearoylphosphatidylethanolamine (DSPE) matrixed with varying amounts of DSPE-PEG (DSPE with polyethylene glycol covalently grafted to its headgroup). Mixed lipid monolayers were Langmuir-Blodgett deposited onto hydrophobic quartz or silicon substrates, previously hydrophobized by chemically grafting a robust monolayer of octadecyltrichlorosilane (OTS). We show that this method results in homogeneous and continuous phospholipid monolayers on the silanated substrates and determine that the grafted PEG chains extend away from the monolayers into the solvent phase as a function of their density, as expected from scaling theories. In addition, ligands were coupled to the end of the PEG chains and selective binding was demonstrated using fluorescence microscopy. Our results demonstrate that these constructs are ideal for further characterization and studies with well-defined monomolecular films.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号