首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  33篇
  2016年   3篇
  2014年   1篇
  2013年   5篇
  2012年   7篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  1994年   1篇
  1907年   1篇
排序方式: 共有33条查询结果,搜索用时 18 毫秒
11.
The 2-bromoimidazolium bromide [ImBr]Br (5, Im=2,3-dihydro-1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) is prepared from Im (4) and bromine. From 4 and CBr4, the adduct [ImBr]Br · CBr4 (6) is obtained. 5 reacts with TeBr4 to give the salt [ImBr][TeBr5] (7). The crystal structures of 5-7 reveal the presence of weak interionic Br to Br interactions which are discussed on comparison with the structure of [ImI]I (8) and similar compounds.  相似文献   
12.
13.
14.
Dwarf mistletoes, genus Arceuthobium (Santalaceae), are parasitic angiosperms that spread their seeds by an explosive process. As gentle heating triggers discharge in the lab, we wondered if thermogenesis (endogenous heat production) is associated with dispersal. Thermogenesis occurs in many plants and is enabled by mitochondrial alternative oxidase (AOX) activity. The purpose of this study was to probe Arceuthobium americanum fruit (including seed tissues) collected over a 10-week period with an anti-AOX antibody/gold-labeled secondary antibody to determine if AOX could be localized in situ, and if so, quantitatively assess whether label distribution changed during development; immunochemical results were evaluated with Western blotting. No label could be detected in the mitochondria of any fruit or seed tissue, but was observed in fruit exocarp plastids of samples collected in the last 2 weeks of study; plastids collected in week 10 had significantly more label than week 9 (p?=?0.002). Western blotting of whole fruit and mitochondrial proteins revealed a signal at 30–36 kD, suggestive of AOX, while blots of whole fruit (but not mitochondrial fraction) proteins showed a second band at 40–45 kD, in agreement with plastid terminal oxidases (PTOXs). AOX enzymes are likely present in the A. americanum fruit, even though they were not labeled in mitochondria. The results strongly indicate that the anti-AOX antibody was labeling PTOX in plastids, probably at a C-terminal region conserved in both enzymes. PTOX in plastids may be involved in fruit ripening, although a role for PTOX in thermogenesis cannot be eliminated.  相似文献   
15.
Despite the identification of severe acute respiratory syndrome-related coronavirus (SARSr-CoV) in Rhinolophus Chinese horseshoe bats (SARSr-Rh-BatCoV) in China, the evolutionary and possible recombination origin of SARSr-CoV remains undetermined. We carried out the first study to investigate the migration pattern and SARSr-Rh-BatCoV genome epidemiology in Chinese horseshoe bats during a 4-year period. Of 1,401 Chinese horseshoe bats from Hong Kong and Guangdong, China, that were sampled, SARSr-Rh-BatCoV was detected in alimentary specimens from 130 (9.3%) bats, with peak activity during spring. A tagging exercise of 511 bats showed migration distances from 1.86 to 17 km. Bats carrying SARSr-Rh-BatCoV appeared healthy, with viral clearance occurring between 2 weeks and 4 months. However, lower body weights were observed in bats positive for SARSr-Rh-BatCoV, but not Rh-BatCoV HKU2. Complete genome sequencing of 10 SARSr-Rh-BatCoV strains showed frequent recombination between different strains. Moreover, recombination was detected between SARSr-Rh-BatCoV Rp3 from Guangxi, China, and Rf1 from Hubei, China, in the possible generation of civet SARSr-CoV SZ3, with a breakpoint at the nsp16/spike region. Molecular clock analysis showed that SARSr-CoVs were newly emerged viruses with the time of the most recent common ancestor (tMRCA) at 1972, which diverged between civet and bat strains in 1995. The present data suggest that SARSr-Rh-BatCoV causes acute, self-limiting infection in horseshoe bats, which serve as a reservoir for recombination between strains from different geographical locations within reachable foraging range. Civet SARSr-CoV is likely a recombinant virus arising from SARSr-CoV strains closely related to SARSr-Rh-BatCoV Rp3 and Rf1. Such frequent recombination, coupled with rapid evolution especially in ORF7b/ORF8 region, in these animals may have accounted for the cross-species transmission and emergence of SARS.Coronaviruses can infect a wide variety of animals, causing respiratory, enteric, hepatic, and neurological diseases with different degrees of severity. On the basis of genotypic and serological characteristics, coronaviruses were classified into three distinct groups (2, 20, 54). Among coronaviruses that infect humans, human coronavirus 229E (HCoV-229E) and human coronavirus NL63 (HCoV-NL63) belong to group 1 coronaviruses and human coronavirus OC43 (HCoV-OC43), and human coronavirus HKU1 (HCoV-HKU1) belong to group 2 coronaviruses, whereas severe acute respiratory syndrome-related coronavirus (SARSr-CoV) has been classified as a group 2b coronavirus, distantly related to group 2a, and the recently discovered group 2c and 2d coronaviruses (6, 8, 10, 18, 31, 38, 43, 46, 49, 50). Recently, the Coronavirus Study Group of the International Committee for Taxonomy of Viruses has proposed renaming the traditional group 1, 2, and 3 coronaviruses Alphacoronavirus, Betacoronavirus, and Gammacoronavirus, respectively (http://talk.ictvonline.org/media/p/1230.aspx).Among all coronaviruses, SARSr-CoV has caused the most severe disease in humans, with over 700 fatalities since the SARS epidemic in 2003. Although the identification of SARSr-CoV in Himalayan palm civets and raccoon dogs in live animal markets in southern China suggested that wild animals could be the origin of SARS (11), the presence of the virus in only market or farmed civets, but not civets in the wild, and the rapid evolution of SARSr-CoV genomes in market civets suggested that these caged animals were only intermediate hosts (24, 39, 42, 52). Since bats are commonly found and served in wild animal markets and restaurants in Guangdong, China (47), we have previously carried out a study of bats from the region and identified a SARSr-CoV in Rhinolophus Chinese horseshoe bats (SARSr-Rh-BatCoV) (21). Similar viruses have also been found in three other species of horseshoe bats in mainland China (25), supporting the hypothesis that horseshoe bats are a reservoir of SARSr-CoV. Recently, viruses closely related to SARSr-Rh-BatCoV in China were also reported in Chaerophon bats from Africa, although only partial RNA-dependent RNA polymerase (RdRp) sequences were available (41). In addition, more than 10 previously unrecognized coronaviruses of huge diversity have since been identified in bats from China and other countries (1, 3, 5, 9, 22, 27, 32, 33, 40, 46, 51), suggesting that bats play an important role in the ecology and evolution of coronaviruses.As a result of the unique mechanism of viral replication, coronaviruses have a high frequency of recombination (20). Such a high recombination rate, coupled with the infidelity of the polymerases of RNA viruses, may allow them to adapt to new hosts and ecological niches (12, 48). Recombination in coronaviruses was first recognized between different strains of murine hepatitis virus (MHV) and subsequently in other coronaviruses, such as infectious bronchitis virus, between MHV and bovine coronavirus, and between feline coronavirus type I and canine coronavirus generating feline coronavirus type II (12, 16, 17, 23). Recently, by complete genome analysis of 22 strains of HCoV-HKU1, we have also documented for the first time that natural recombination events in a human coronavirus can give rise to three different genotypes (48).Although previous studies have attempted to study the possible evolutionary and recombination origin of SARSr-CoV, no definite conclusion can be made on whether the viruses from bats are the direct ancestor of SARSr-CoV in civets and humans, given the paucity of available strains and genome sequences. To better define the epidemiology and evolution of SARSr-Rh-BatCoV in China and their role as a recombination origin of SARSr-CoV in civets, we carried out a 4-year study on coronaviruses in Chinese horseshoe bats in Hong Kong and Guangdong Province of southern China. Bat tagging was also performed to study the migration pattern of bats and viral persistence. The complete genomes of 10 strains of SARSr-Rh-BatCoV obtained at different time were sequenced and compared to previously sequenced genomes. With the availability of this larger set of genome sequences for more accurate analysis, recombination and molecular clock analyses were performed to elucidate the evolutionary origin and time of interspecies transmission of SARSr-CoV.  相似文献   
16.
A method was developed that enables in-line analysis of film coating thickness on tablets during a pan coating operation. Real-time measurements were made using a diffusereflectance near-infrared (NIR) probe positioned inside the pan during the coating operation. Real-time spectra of replicate batches were used for modeling film growth. Univariate analysis provided a simple method for in-line monitoring of the coating process using NIR data. An empirical geometric 2-vector volumetric growth model was developed, which accounts for differential growth on the face and band regions of biconvex tablets. The thickness of the film coat was determined by monitoring the decrease of absorption bands characteristic of a component of the tablet core and monitoring the increase of bands characteristic of a component in the coating material. There was good correlation between values estimated from the NIR data and the measured tablet volumetric growth. In-line measurements allow the coating process to be stopped when a predetermined tablet coating thickness is achieved. Published: September 20, 2005  相似文献   
17.
Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.  相似文献   
18.
Although coronaviruses are known to infect various animals by adapting to new hosts, interspecies transmission events are still poorly understood. During a surveillance study from 2005 to 2010, a novel alphacoronavirus, BatCoV HKU10, was detected in two very different bat species, Ro-BatCoV HKU10 in Leschenault''s rousettes (Rousettus leschenaulti) (fruit bats in the suborder Megachiroptera) in Guangdong and Hi-BatCoV HKU10 in Pomona leaf-nosed bats (Hipposideros pomona) (insectivorous bats in the suborder Microchiroptera) in Hong Kong. Although infected bats appeared to be healthy, Pomona leaf-nosed bats carrying Hi-BatCoV HKU10 had lower body weights than uninfected bats. To investigate possible interspecies transmission between the two bat species, the complete genomes of two Ro-BatCoV HKU10 and six Hi-BatCoV HKU10 strains were sequenced. Genome and phylogenetic analyses showed that Ro-BatCoV HKU10 and Hi-BatCoV HKU10 represented a novel alphacoronavirus species, sharing highly similar genomes except in the genes encoding spike proteins, which had only 60.5% amino acid identities. Evolution of the spike protein was also rapid in Hi-BatCoV HKU10 strains from 2005 to 2006 but stabilized thereafter. Molecular-clock analysis dated the most recent common ancestor of all BatCoV HKU10 strains to 1959 (highest posterior density regions at 95% [HPDs], 1886 to 2002) and that of Hi-BatCoV HKU10 to 1986 (HPDs, 1956 to 2004). The data suggested recent interspecies transmission from Leschenault''s rousettes to Pomona leaf-nosed bats in southern China. Notably, the rapid adaptive genetic change in BatCoV HKU10 spike protein by ∼40% amino acid divergence after recent interspecies transmission was even greater than the ∼20% amino acid divergence between spike proteins of severe acute respiratory syndrome-related Rhinolophus bat coronavirus (SARSr-CoV) in bats and civets. This study provided the first evidence for interspecies transmission of coronavirus between bats of different suborders.  相似文献   
19.
For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was established in 2008 to characterize GWAS-identified variants in diverse population-based studies. We genotyped 49 GWAS-identified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified European American (~20,000), African American (~9,000), American Indian (~6,000), Mexican American/Hispanic (~2,500), Japanese/East Asian (~690), and Pacific Islander/Native Hawaiian (~175) adults, regardless of lipid-lowering medication use. We replicated 55 of 60 (92%) SNP associations tested in European Americans at p<0.05. Despite sufficient power, we were unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p<0.05) and consistent direction of effect, a majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%, 56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize, differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association studies for these traits.  相似文献   
20.
We discovered a novel canine picornavirus in fecal, nasopharyngeal, and urine samples from dogs. The coding potential of its genome (5'-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C(pro)-3D(pol)-3', where 3C(pro) is 3C protease and 3D(pol) is 3D polymerase) is similar to those of other picornaviruses, with putative P1, P2, and P3 sharing 54% to 58%, 60%, and 64% to 67% amino acid identities with bat picornavirus groups 1, 2, and 3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号