首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3905篇
  免费   387篇
  国内免费   2篇
  4294篇
  2023年   10篇
  2022年   39篇
  2021年   92篇
  2020年   35篇
  2019年   56篇
  2018年   67篇
  2017年   52篇
  2016年   102篇
  2015年   164篇
  2014年   216篇
  2013年   231篇
  2012年   285篇
  2011年   281篇
  2010年   176篇
  2009年   155篇
  2008年   202篇
  2007年   230篇
  2006年   191篇
  2005年   214篇
  2004年   188篇
  2003年   165篇
  2002年   186篇
  2001年   93篇
  2000年   107篇
  1999年   83篇
  1998年   36篇
  1997年   36篇
  1996年   32篇
  1995年   39篇
  1994年   34篇
  1993年   35篇
  1992年   40篇
  1991年   42篇
  1990年   39篇
  1989年   27篇
  1988年   20篇
  1987年   17篇
  1986年   20篇
  1985年   17篇
  1984年   22篇
  1982年   17篇
  1980年   16篇
  1979年   18篇
  1978年   14篇
  1977年   12篇
  1976年   8篇
  1975年   14篇
  1974年   18篇
  1973年   12篇
  1970年   12篇
排序方式: 共有4294条查询结果,搜索用时 15 毫秒
31.
This study describes an efficient multiparallel automated workflow of cloning, expression, purification, and crystallization of a large set of construct variants for isolated protein domains aimed at structure determination by X-ray crystallography. This methodology is applied to MAPKAP kinase 2, a key enzyme in the inflammation pathway and thus an attractive drug target. The study reveals a distinct subset of truncation variants with improved crystallization properties. These constructs distinguish themselves by increased solubility and stability during a parallel automated multistep purification process including removal of the recombinant tag. High-throughput protein melting point analysis characterizes this subset of constructs as particularly thermostable. Both parallel purification screening and melting point determination clearly identify residue 364 as the optimal C terminus for the kinase domain. Moreover, all three constructs that ultimately crystallized feature this C terminus. At the N terminus, only three amino acids differentiate a noncrystallizing from a crystallizing construct. This study addresses the very common issues associated with difficult to crystallize proteins, those of solubility and stability, and the crucial importance of particular residues in the formation of crystal contacts. A methodology is suggested that includes biophysical measurements to efficiently identify and produce construct variants of isolated protein domains which exhibit higher crystallization propensity.  相似文献   
32.
Because of their mediating role in the stress response and potential effects on fitness, glucocorticoid (GC) hormones are increasingly used to assess the physiological costs of environmental and behavioral variation among wild vertebrates. Identifying the proximate causes of GC variation, however, is complicated by simultaneous exposure to multiple potentially stressful stimuli. Here, we use data from a partially provisioned social group of Sykes' monkeys to evaluate the effects of potential psychological and metabolic stressors on temporal and individual variation in fecal GC (fGC) excretion among 11 adult females. Despite high rates of agonism over provisioned foods fGCs declined during periods of high provisioning frequency when fruit availability was dominated by neem (Azadirachta indica), an item requiring great feeding effort. Provisioned foods did not prevent fGC increases when availability of the most preferred main fruit item, tamarind (Tamarindus indica), declined drastically. Although rank-related differences in access to provisioned foods and rates of agonism did not lead to an overall effect of rank on fGCs, low-ranking females excreted more fGCs than high-ranking females during a period of high provisioning intensity and low fruit availability. The emergence of this rank effect was associated with elevated feeding effort in all females, a greater access to provisioned items by high-ranking females, and a higher proportion of time spent moving in low-ranking females. Our findings suggest that metabolic stressors were the primary determinants of both temporal and individual variation in fGCs, indicating potential fitness benefits for high-ranking females when food availability is limited.  相似文献   
33.
34.
Metabolomics is facing a major challenge: the lack of knowledge about metabolites present in a given biological system. Thus, large-scale discovery of metabolites is considered an essential step toward a better understanding of plant metabolism. We show here that the application of a metabolomics approach generating structural information for the analysis of Arabidopsis (Arabidopsis thaliana) mutants allows the efficient cataloging of metabolites. Fifty-six percent of the features that showed significant differences in abundance between seeds of wild-type, transparent testa4, and transparent testa5 plants could be annotated. Seventy-five compounds were structurally characterized, 21 of which could be identified. About 40 compounds had not been known from Arabidopsis before. Also, the high-resolution analysis revealed an unanticipated expansion of metabolic conversions upstream of biosynthetic blocks. Deficiency in chalcone synthase results in the increased seed-specific biosynthesis of a range of phenolic choline esters. Similarly, a lack of chalcone isomerase activity leads to the accumulation of various naringenin chalcone derivatives. Furthermore, our data provide insight into the connection between p-coumaroyl-coenzyme A-dependent pathways. Lack of flavonoid biosynthesis results in elevated synthesis not only of p-coumarate-derived choline esters but also of sinapate-derived metabolites. However, sinapoylcholine is not the only accumulating end product. Instead, we observed specific and sophisticated changes in the complex pattern of sinapate derivatives.  相似文献   
35.
36.
Quality control mechanisms in the endoplasmic reticulum (ER) ensure that misfolded proteins are recognized and targeted for degradation. According to the current view of ER-associated degradation (ERAD), the degradation does not occur in the ER itself but requires the retrotranslocation of the proteins to the cytosol where they are degraded by proteasomes. Although this model appears to be valid for many different proteins a number of exceptions from this rule suggest that additional proteasome-independent ERAD pathways may exist. In this review, we will summarize what is known about these alternative ERAD pathways.  相似文献   
37.
Molecular imaging has gained attention as a possible approach for the study of the progression of inflammation and disease dynamics. Herein we used [18F]-2-deoxy-2-fluoro-D-glucose ([18F]-FDG) as a radiotracer for PET imaging coupled with CT (FDG-PET/CT) to gain insight into the spatiotemporal progression of the inflammatory response of ferrets infected with a clinical isolate of a pandemic influenza virus, H1N1 (H1N1pdm). The thoracic regions of mock- and H1N1pdm-infected ferrets were imaged prior to infection and at 1, 2, 3 and 6 days post-infection (DPI). On 1 DPI, FDG-PET/CT imaging revealed areas of consolidation in the right caudal lobe which corresponded with elevated [18F]-FDG uptake (maximum standardized uptake values (SUVMax), 4.7–7.0). By days 2 and 3, consolidation (CT) and inflammation ([18F]-FDG) appeared in the left caudal lobe. By 6 DPI, CT images showed extensive areas of patchy ground-glass opacities (GGO) and consolidations with the largest lesions having high SUVMax (6.0–7.6). Viral shedding and replication were detected in most nasal, throat and rectal swabs and nasal turbinates and lungs on 1, 2 and 3 DPI, but not on day 7, respectively. In conclusion, molecular imaging of infected ferrets revealed a progressive consolidation on CT with corresponding [18F]-FDG uptake. Strong positive correlations were measured between SUVMax and bronchiolitis-related pathologic scoring (Spearman’s ρ = 0.75). Importantly, the extensive areas of patchy GGO and consolidation seen on CT in the ferret model at 6 DPI are similar to that reported for human H1N1pdm infections. In summary, these first molecular imaging studies of lower respiratory infection with H1N1pdm show that FDG-PET can give insight into the spatiotemporal progression of the inflammation in real-time.  相似文献   
38.
39.
The enigmatic arrow worms (Chaetognatha) are marine carnivores and among the most abundant planktonic organisms. Their phylogenetic position has been heavily debated for a long time. Most recent molecular studies still provide a diverging picture and suggest arrow worms to be some kind of basal protostomes. In an effort to understand the organization of the nervous system in this clade for a broad comparison with other Metazoa we analysed the ultrastructure of the ventral nerve centre in Spadella cephaloptera by transmission electron microscopy. We were able to identify six different types of neurons in the bilateral somata clusters by means of the cytoplasmic composition (regarding the structure of the neurite and soma including the shape and eu-/heterochromatin ratio within the nucleus) as well as the size and position of these neurons. Furthermore, our study provides new insights into the neuropil composition of the ventral nerve centre and several other fine structural features. Our second goal was to examine if individually identifiable neurons are present in the ventral nerve centres of four chaetognath species, Sagitta setosa, Sagitta enflata, Pterosagitta draco, and Spadella cephaloptera. For that purpose, we processed whole mount specimens of these species for immunolocalization of RFamide-related neuropeptides and analysed them with confocal laser-scanning microscopy. Our experiments provide evidence for the interspecific homology of individual neurons in the ventral nerve centres of these four chaetognath species suggesting that the potential to generate serially arranged neurons with individual identities is part of their ground pattern.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号