首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2280篇
  免费   204篇
  国内免费   2篇
  2023年   7篇
  2022年   13篇
  2021年   58篇
  2020年   22篇
  2019年   38篇
  2018年   47篇
  2017年   29篇
  2016年   64篇
  2015年   116篇
  2014年   139篇
  2013年   170篇
  2012年   192篇
  2011年   195篇
  2010年   117篇
  2009年   112篇
  2008年   137篇
  2007年   149篇
  2006年   123篇
  2005年   135篇
  2004年   107篇
  2003年   100篇
  2002年   116篇
  2001年   23篇
  2000年   17篇
  1999年   22篇
  1998年   19篇
  1997年   15篇
  1996年   11篇
  1995年   17篇
  1994年   10篇
  1993年   11篇
  1992年   9篇
  1991年   11篇
  1990年   11篇
  1989年   10篇
  1988年   5篇
  1987年   10篇
  1986年   8篇
  1985年   7篇
  1984年   5篇
  1982年   7篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   5篇
  1975年   6篇
  1974年   7篇
  1973年   4篇
  1972年   4篇
  1970年   4篇
排序方式: 共有2486条查询结果,搜索用时 859 毫秒
311.

Background  

Structural analysis of cellular interaction networks contributes to a deeper understanding of network-wide interdependencies, causal relationships, and basic functional capabilities. While the structural analysis of metabolic networks is a well-established field, similar methodologies have been scarcely developed and applied to signaling and regulatory networks.  相似文献   
312.
Computational scientists have developed algorithms inspired by natural evolution for at least 50 years. These algorithms solve optimization and design problems by building solutions that are 'more fit' relative to desired properties. However, the basic assumptions of this approach are outdated. We propose a research programme to develop a new field: computational evolution. This approach will produce algorithms that are based on current understanding of molecular and evolutionary biology and could solve previously unimaginable or intractable computational and biological problems.  相似文献   
313.
Two models have been proposed for how calorie restriction (CR) enhances replicative longevity in yeast: (i) suppression of rDNA recombination through activation of the sirtuin protein deacetylase Sir2 or (ii) decreased activity of the nutrient-responsive kinases Sch9 and TOR. We report here that CR increases lifespan independently of all Sir2-family proteins in yeast. Furthermore, we demonstrate that nicotinamide, an inhibitor of Sir2-mediated deacetylation, interferes with lifespan extension from CR, but does so independent of Sir2, Hst1, Hst2, and Hst4. We also find that 5 mm nicotinamide, a concentration sufficient to inhibit other sirtuins, does not phenocopy deletion of HST3. Thus, we propose that lifespan extension by CR is independent of sirtuins and that nicotinamide has sirtuin-independent effects on lifespan extension by CR.  相似文献   
314.
Biomarkers   总被引:1,自引:0,他引:1  
  相似文献   
315.
The interstitial cells of cardiac valves represent one of the most frequent cell types in the mammalian heart. In order to provide a cell and molecular biological basis for the growth of isolated valvular interstitial cells (VICs) in cell culture and for the use in re-implantation surgery we have examined VICs in situ and in culture, in fetal, postnatal and adult hearts, in re-associations with scaffolds of extracellular matrix (ECM) material and decellularized heart valves. In all four mammalian species examined (human, bovine, porcine and ovine), the typical mesenchymal-type cell-cell adherens junctions (AJs) connecting VICs appear as normal N-cadherin based puncta adhaerentia. Their molecular ensemble, however, changes under various growth conditions insofar as plakophilin-2 (Pkp2), known as a major cytoplasmic plaque component of epithelial desmosomes, is recruited to and integrated in the plaques of VIC-AJs as a major component under growth conditions characterized by enhanced proliferation, i.e., in fetal heart valves and in cell cultures. Upon re-seeding onto decellularized heart valves or in stages of growth in association with artificial scaffolds, Pkp2 is - for the most part - lost from the AJs. As Pkp2 has recently also been detected in AJs of cardiac myxomata and diverse other mesenchymal tumors, the demonstrated return to the normal Pkp2-negative state upon re-association with ECM scaffolds and decellularized heart valves may now provide a safe basis for the use of cultured VICs in valve replacement surgery. Even more surprising, this type of transient acquisition of Pkp2 has also been observed in distinct groups of endothelial cells of the endocardium, where it seems to correspond to the cell type ready for endothelial-mesenchymal transition (EMT).  相似文献   
316.
Oxidatively damaged DNA may be important in carcinogenesis. 8-Oxo-7,8-dihydroguanine (8-oxoGua) is an abundant and mutagenic lesion excised by oxoguanine DNA glycosylase 1 (OGG1) and measurable in urine or plasma by chromatographic methods with electrochemical or mass spectrometric detectors, reflecting the rate of damage in steady state. A common genetic OGG1 variant may affect the activity and was associated with increased levels of oxidized purines in leukocytes without apparent effect on 8-oxoGua excretion or major change in cancer risk. 8-OxoGua excretion has been associated with exposure to air pollution, toxic metals, tobacco smoke and low plasma antioxidant levels, whereas fruit and vegetable intake or dietary interventions showed no association. In rodent studies some types of feed may be source of 8-oxoGua in collected urine. Of cancer therapies, cisplatin increased 8-oxoGua excretion, whereas radiotherapy only showed such effects in experimental animals. Case-control studies found high excretion of 8-oxoGua in relation to cancer, dementia and celiac disease but not hemochromatosis, although associations could be a consequence rather than reflecting causality of disease. One prospective study found increased risk of developing lung cancer among non-smokers associated with high excretion of 8-oxoGua. Urinary excretion of 8-oxoGua is a promising biomarker of oxidatively damaged DNA.  相似文献   
317.
318.
The blood–air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighbored cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood–air barrier.  相似文献   
319.
We and others have recently described the antagonistic role of Bone morphogenetic protein-7 (BMP-7) in TGF-β signalling and myogenic differentiation. To specify the underlying mechanism(s), we here analysed the expression and function of the individual components mediating TGF-β1 and BMP-7 responses. We found that BMP-7 at a concentration of 25 ng/ml induces signalling exclusively via ALK2 and ALK3 leading to the activation of Smad1 and Smad5 and subsequent expression of Id proteins. In contrast, low doses of TGF-β1 (0.1 ng/ml) lead to an exclusive activation of ALK5 and phosphorylation of Smad2 and Smad3 that regulate specific target genes including connective tissue growth factor (CTGF). CTGF is rapidly induced by TGF-β1 already 1h after stimulation and reduced by BMP-7 application. Smad1/Smad5 or Id1/2 overexpression reduced the TGF-β1-mediated expression of CTGF. However, although siRNA-mediated knock down of Alk2/3 or Smad1/5 counteracts the BMP-7 effect on basal CTGF expression there was no consistent reversion of the observed BMP-7 effect on TGF-β1-mediated CTGF expression. Moreover, ALK5 inhibition using the SB431542 inhibitor significantly affected CTGF expression only at later time points whereas ERK1/2 inhibition completely abrogated CTGF expression. These findings point towards a regulatory role of BMP-7 that relies on modulation of Mitogen-activated protein kinases rather than mechanisms that are exclusively driven by differential Smad activation.  相似文献   
320.
Cell surface proteolysis is essential for communication between cells and results in the shedding of membrane-protein ectodomains. However, physiological substrates of the contributing proteases are largely unknown. We developed the secretome protein enrichment with click sugars (SPECS) method, which allows proteome-wide identification of shedding substrates and secreted proteins from primary cells, even in the presence of serum proteins. SPECS combines metabolic glycan labelling and click chemistry-mediated biotinylation and distinguishes between cellular and serum proteins. SPECS identified 34, mostly novel substrates of the Alzheimer protease BACE1 in primary neurons, making BACE1 a major sheddase in the nervous system. Selected BACE1 substrates-seizure-protein 6, L1, CHL1 and contactin-2-were validated in brains of BACE1 inhibitor-treated and BACE1 knock-out mice. For some substrates, BACE1 was the major sheddase, whereas for other substrates additional proteases contributed to total substrate shedding. The new substrates point to a central function of BACE1 in neurite outgrowth and synapse formation. SPECS is also suitable for quantitative secretome analyses of primary cells and may be used for the discovery of biomarkers secreted from tumour or stem cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号