首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2280篇
  免费   204篇
  国内免费   2篇
  2023年   7篇
  2022年   13篇
  2021年   58篇
  2020年   22篇
  2019年   38篇
  2018年   47篇
  2017年   29篇
  2016年   64篇
  2015年   116篇
  2014年   139篇
  2013年   170篇
  2012年   192篇
  2011年   195篇
  2010年   117篇
  2009年   112篇
  2008年   137篇
  2007年   149篇
  2006年   123篇
  2005年   135篇
  2004年   107篇
  2003年   100篇
  2002年   116篇
  2001年   23篇
  2000年   17篇
  1999年   22篇
  1998年   19篇
  1997年   15篇
  1996年   11篇
  1995年   17篇
  1994年   10篇
  1993年   11篇
  1992年   9篇
  1991年   11篇
  1990年   11篇
  1989年   10篇
  1988年   5篇
  1987年   10篇
  1986年   8篇
  1985年   7篇
  1984年   5篇
  1982年   7篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   5篇
  1975年   6篇
  1974年   7篇
  1973年   4篇
  1972年   4篇
  1970年   4篇
排序方式: 共有2486条查询结果,搜索用时 187 毫秒
271.
Vogel R  Lüdeke S  Radu I  Siebert F  Sheves M 《Biochemistry》2004,43(31):10255-10264
Meta III is an inactive intermediate thermally formed following light activation of the visual pigment rhodopsin. It is produced from the Meta I/Meta II photoproduct equilibrium of rhodopsin by a thermal isomerization of the protonated Schiff base C=N bond of Meta I, and its chromophore configuration is therefore all-trans 15-syn. In contrast to the dark state of rhodopsin, which catalyzes exclusively the cis to trans isomerization of the C11=C12 bond of its 11-cis 15-anti chromophore, Meta III does not acquire this photoreaction specificity. Instead, it allows for light-dependent syn to anti isomerization of the C15=N bond of the protonated Schiff base, yielding Meta II, and for trans to cis isomerizations of C11=C12 and C9=C10 of the retinal polyene, as shown by FTIR spectroscopy. The 11-cis and 9-cis 15-syn isomers produced by the latter two reactions are not stable, decaying on the time scale of few seconds to dark state rhodopsin and isorhodopsin by thermal C15=N isomerization, as indicated by time-resolved FTIR methods. Flash photolysis of Meta III produces therefore Meta II, dark state rhodopsin, and isorhodopsin. Under continuous illumination, the latter two (or its unstable precursors) are converted as well to Meta II by presumably two different mechanisms.  相似文献   
272.
Teratozoospermia (ejaculation of <40% morphologically normal sperm) commonly occurs within the Felidae, including certain domestic cats, but the cellular and molecular mechanisms that give rise to this phenomenon remain unknown. This study quantified spermatogenesis to identify differential dysfunctions in teratospermic versus normospermic (>60% normal sperm/ejaculate) domestic cats. Sperm used were from electroejaculates and cauda epididymides. Testes from 10 normo- and 10 teratospermic males were obtained by castration and then evaluated by histomorphometry, flow cytometry, and testicular testosterone enzyme immunoassay. Some morphometric traits (tubular diameter, epithelium height, interstitial area, number of Leydig cells, and blood vessels per cross-section) as well as testicular testosterone concentrations were similar between groups, but testicular volume was greater in teratospermic males. Stage frequencies differed also between both cat populations, suggesting possible dysfunctions in spermiation. Quantification of cell populations in most frequent stages revealed more spermatogenic cells and fewer Sertoli cells per tubule cross-section as well as per tissue unit in teratospermic donors. Hence, the ratio of spermatogenic cells per Sertoli cell was elevated in the teratospermic cat. DNA flow cytometry confirmed higher total spermatogenic and meiotic transformations in teratospermic males. In summary, compared with normospermic counterparts, teratospermic cats have a higher sperm output achieved by more sperm-producing tissue, more germ cells per Sertoli cell, and reduced germ cell loss during spermatogenesis. Gains in sperm quantity are produced at the expense of sperm quality.  相似文献   
273.
Nitric oxide (NO)-sensitive soluble guanylyl cyclase (sGC) is the major cytosolic receptor for NO, catalyzing the conversion of GTP to cGMP. In a search for proteins specifically interacting with human sGC, we have identified the multidomain protein AGAP1, the prototype of an ArfGAP protein with a GTPase-like domain, Ankyrin repeats, and a pleckstrin homology domain. AGAP1 binds through its carboxyl terminal portion to both the alpha1 and beta1 subunits of sGC. We demonstrate that AGAP1 mRNA and protein are co-expressed with sGC in human, murine, and rat cells and tissues and that the two proteins interact in vitro and in vivo. We also show that AGAP1 is prone to tyrosine phosphorylation by Src-like kinases and that tyrosine phosphorylation potently increases the interaction between AGAP1 and sGC, indicating that complex formation is modulated by reversible phosphorylation. Our findings may hint to a potential role of AGAP1 in integrating signals from Arf, NO/cGMP, and tyrosine kinase signaling pathways.  相似文献   
274.
The use of acrylic polymers in infiltrating the porous bone structure is an emerging procedure for the augmentation of osteoporotic vertebrae. Although this procedure is employed frequently, it is performed based on empirical knowledge, and therefore, does not take into consideration the porosity-dependent permeability of human vertebral cancellous bone. The purpose of this study was to: (a). experimentally and theoretically investigate interdependence of the vertebral cancellous bone permeability and porosity, and (b). examine if the bone permeability of spinal cancellous bone can be predicted using bone mineral density measurements. If these relations can be established, they can be useful in optimizing the injection conditions for predicable cement infiltration. To determine the porosity-dependent and directional permeability, 34 bone cores-20 samples in the superior-inferior (SI) direction and 14 in the anterior-posterior (AP) direction-were cut from 20 lumbar vertebrae and infiltrated with silicone oil with a viscosity matching that of PMMA. The permeability of the cores was determined based on Darcy's law. The mean permeability of SI and AP cores was 4.45+/-1.72 x 10(-8) and 3.44+/-1.26 x 10(-8)m(2), respectively. An interesting finding of this study was that the permeability of the AP cores was approximately 78% of that of SI cores, though the porosity of the SI and AP cores taken from the same vertebra was approximately equal. In addition, we provided a theoretical model for the porosity-dependent permeability that accurately described non-linear dependency of the bone permeability and porosity in both directions. Although the relation of the bone permeability and porosity was established, bone mineral density was a weak predictor of the bone permeability. The experimental and theoretical results of this study can be used to understand polymer flow in cement infiltration procedures.  相似文献   
275.
In Xenopus oocytes, the spindle assembly checkpoint (SAC) kinase Bub1 is required for cytostatic factor (CSF)-induced metaphase arrest in meiosis II. To investigate whether matured mouse oocytes are kept in metaphase by a SAC-mediated inhibition of the anaphase-promoting complex/cyclosome (APC/C) complex, we injected a dominant-negative Bub1 mutant (Bub1dn) into mouse oocytes undergoing meiosis in vitro. Passage through meiosis I was accelerated, but even though the SAC was disrupted, injected oocytes still arrested at metaphase II. Bub1dn-injected oocytes released from CSF and treated with nocodazole to disrupt the second meiotic spindle proceeded into interphase, whereas noninjected control oocytes remained arrested at metaphase. Similar results were obtained using dominant-negative forms of Mad2 and BubR1, as well as checkpoint resistant dominant APC/C activating forms of Cdc20. Thus, SAC proteins are required for checkpoint functions in meiosis I and II, but, in contrast to frog eggs, the SAC is not required for establishing or maintaining the CSF arrest in mouse oocytes.  相似文献   
276.
277.
Data regarding the role of TGF-beta for the in vivo function of regulatory CD4(+)CD25(+) T cells (Treg) are controversial. A transgenic mouse model with impaired TGF-beta signaling specifically in T cells was used to assess the role of endogenous TGF-beta for the in vivo function of CD4(+)CD25(+) Treg in a murine model of colitis induced by dextran sulfate. Transfer of wild-type, but not transgenic CD4(+)CD25(+) Treg was found to suppress colitis in wild-type mice. In addition, by transferring CFSE-labeled CD4(+)CD25(+) Treg we could demonstrate that endogenous TGF-beta promotes the expansion of CD4(+)CD25(+) Treg in vivo. Transgenic mice themselves developed reduced numbers of peripheral CD4(+)CD25(+) Treg and were more susceptible to the induction of colitis, which could be prevented by the transfer of wild-type Treg. These data indicate that TGF-beta signaling in CD4(+)CD25(+) Treg is required for their in vivo expansion and suppressive capacity.  相似文献   
278.
Multi-domain bacterial protein toxins are being explored as potential carriers for targeted delivery of biomolecules. Previous approaches employing isolated receptor binding subunits disallow entry into the cytosol. Strategies in which catalytic domains are replaced with cargo molecules are presumably inefficient due to co-operation of domains during the endosomal translocation step. Here, we characterize a novel transport vehicle in which cargo proteins are attached to the amino terminus of the full-length botulinum neurotoxin type D (BoNT/D). The intrinsic enzymatic activity of the neurotoxin allowed quantification of the efficacy of cargo delivery to the cytosol. Dihydrofolate reductase and BoNT type A (BoNT/A) light chain (LC) were efficiently conveyed into the cytosol, whereas attachment of firefly luciferase or green fluorescent protein drastically reduced the toxicity. Luciferase and BoNT/A LC retained their catalytic activity as evidenced by luciferin conversion or SNAP-25 hydrolysis in the cytosol of synaptosomes, respectively. Conformationally stabilized dihydrofolate reductase as cargo considerably decreased the toxicity indicative for the requirement of partial unfolding of cargo protein and catalytic domain as prerequisite for efficient translocation across the endosomal membrane. Thus, enzymatically inactive clostridial neurotoxins may serve as effective, safe carriers for delivering proteins in functionally active form to the cytosol of neurones.  相似文献   
279.
The V3 loop of the simian immunodeficiency virus (SIV) envelope protein (Env) largely determines interactions with viral coreceptors. To define amino acids in V3 that are critical for coreceptor engagement, we functionally characterized Env variants with amino acid substitutions at position 324 in V3, which has previously been shown to impact SIV cell tropism. These changes modulated CCR5 engagement and, in some cases, allowed the efficient usage of CCR5 in the absence of CD4. The tested amino acid substitutions had highly differential effects on viral infectivity. Eleven of sixteen substitutions disrupted entry via CCR5 or the alternative coreceptor GPR15. Nevertheless, most of these variants replicated in the macaque T-cell line 221-89 and some also replicated in rhesus macaque peripheral blood monocytes, suggesting that efficient usage of CCR5 and GPR15 on cell lines is not a prerequisite for SIV replication in primary cells. Four variants showed enhanced entry into the macaque sMagi reporter cell line. However, sMagi cells did not express appreciable amounts of CCR5 and GPR15 mRNA, and entry into these cells was not efficiently blocked by a small-molecule CCR5 antagonist, suggesting that sMagi cells express as-yet-unidentified entry cofactors. In summary, we found that a single amino acid at position 324 in the SIV Env V3 loop can modulate both the efficiency and the types of coreceptors engaged by Env and allow for CD4-independent fusion in some cases.  相似文献   
280.
Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox   总被引:4,自引:0,他引:4  
Two decades after a worldwide vaccination campaign was used to successfully eradicate naturally occurring smallpox, the threat of bioterrorism has led to renewed vaccination programs. In addition, sporadic outbreaks of human monkeypox in Africa and a recent outbreak of human monkeypox in the U.S. have made it clear that naturally occurring zoonotic orthopoxvirus diseases remain a public health concern. Much of the threat posed by orthopoxviruses could be eliminated by vaccination; however, because the smallpox vaccine is a live orthopoxvirus vaccine (vaccinia virus) administered to the skin, the vaccine itself can pose a serious health risk. Here, we demonstrate that rhesus macaques vaccinated with a DNA vaccine consisting of four vaccinia virus genes (L1R, A27L, A33R, and B5R) were protected from severe disease after an otherwise lethal challenge with monkeypox virus. Animals vaccinated with a single gene (L1R) which encodes a target of neutralizing antibodies developed severe disease but survived. This is the first demonstration that a subunit vaccine approach to smallpox-monkeypox immunization is feasible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号