首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4049篇
  免费   427篇
  国内免费   2篇
  2022年   30篇
  2021年   78篇
  2020年   31篇
  2019年   57篇
  2018年   64篇
  2017年   43篇
  2016年   86篇
  2015年   163篇
  2014年   213篇
  2013年   243篇
  2012年   300篇
  2011年   278篇
  2010年   190篇
  2009年   161篇
  2008年   210篇
  2007年   225篇
  2006年   199篇
  2005年   214篇
  2004年   170篇
  2003年   162篇
  2002年   177篇
  2001年   82篇
  2000年   95篇
  1999年   69篇
  1998年   53篇
  1997年   38篇
  1996年   44篇
  1995年   44篇
  1994年   37篇
  1993年   47篇
  1992年   51篇
  1991年   50篇
  1990年   47篇
  1989年   38篇
  1988年   42篇
  1987年   30篇
  1986年   36篇
  1985年   32篇
  1984年   30篇
  1983年   17篇
  1982年   17篇
  1979年   17篇
  1978年   21篇
  1977年   18篇
  1975年   15篇
  1974年   20篇
  1973年   18篇
  1972年   20篇
  1970年   15篇
  1968年   14篇
排序方式: 共有4478条查询结果,搜索用时 218 毫秒
121.
KV10.1 is a voltage-gated potassium channel aberrantly expressed in many cases of cancer, and participates in cancer initiation and tumor progression. Its action as an oncoprotein can be inhibited by a functional monoclonal antibody, indicating a role for channels located at the plasma membrane, accessible to the antibody. Cortactin is an actin-interacting protein implicated in cytoskeletal architecture and often amplified in several types of cancer. In this study, we describe a physical and functional interaction between cortactin and KV10.1. Binding of these two proteins occurs between the C terminus of KV10.1 and the proline-rich domain of cortactin, regions targeted by many post-translational modifications. This interaction is specific for KV10.1 and does not occur with KV10.2. Cortactin controls the abundance of KV10.1 at the plasma membrane and is required for functional expression of KV10.1 channels.  相似文献   
122.
Genetic diversity provides the basic substrate for evolution, yet few studies assess the impacts of global climate change (GCC) on intraspecific genetic variation. In this review, we highlight the importance of incorporating neutral and non‐neutral genetic diversity when assessing the impacts of GCC, for example, in studies that aim to predict the future distribution and fate of a species or ecological community. Specifically, we address the following questions: Why study the effects of GCC on intraspecific genetic diversity? How does GCC affect genetic diversity? How is the effect of GCC on genetic diversity currently studied? Where is potential for future research? For each of these questions, we provide a general background and highlight case studies across the animal, plant and microbial kingdoms. We further discuss how cryptic diversity can affect GCC assessments, how genetic diversity can be integrated into studies that aim to predict species' responses on GCC and how conservation efforts related to GCC can incorporate and profit from inclusion of genetic diversity assessments. We argue that studying the fate of intraspecifc genetic diversity is an indispensable and logical venture if we are to fully understand the consequences of GCC on biodiversity on all levels.  相似文献   
123.
Polar transport of auxin has been identified as a central element of pattern formation. To address the underlying cellular mechanisms, we use the tobacco cell line (Nicotiana tabacum L. cv. Bright Yellow 2; BY-2) as model. We showed previously that cell divisions within a cell file are synchronized by polar auxin flow, linked to the organization of actin filaments (AF) which, in turn, is modified via actin-binding proteins (ABPs). From a preparatory study for disturbed division synchrony in cell lines overexpressing different ABPs, we identified the actin depolymerizing factor 2 (ADF2). A cell line overexpressing GFP-NtADF2 was specifically affected in division synchrony. The cell division pattern could be rescued by addition of Phosphatidylinositol 4,5-bisphosphate (PIP2) or by phalloidin. These observations allow to draw first conclusions on the pathway linking auxin signalling via actin reorganization to synchronized cell division placing the regulation of cortical actin turnover by ADF2 into the focus.  相似文献   
124.
A highly sensitive recording method is developed for determining the activity of the CoB-12-dependent enzyme, bacterial glycerol dehydratase. The method is based on the ability of alcohol dehydrogenase, in the presence of NADH2, to reduce aldehydes formed from glycols by glycerol dehydratase. The rate of the coupled reaction is measured spectrophotometrically by the decrease in optical density at 340 nm or by measuring the decrease of H+ concentration with a sensitive pH-metric method. The conditions for coupling these two reactions, method of application, and its advantages and limitations are discussed. The method is highly sensitive and makes it possible to detect 0.5–2.5 × 10?3 glycerol dehydratase units.  相似文献   
125.
126.
Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR-ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR-ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1-mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell-mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance.  相似文献   
127.
Subsurface ecosystems like groundwater harbour diverse microbial communities, including small-sized, putatively symbiotic organisms of the Candidate Phyla Radiation, yet little is known about their ecological preferences and potential microbial partners. Here, we investigated a member of the superphylum Microgenomates (Cand. Roizmanbacterium ADI133) from oligotrophic groundwater using mini-metagenomics and monitored its spatio-temporal distribution using 16S rRNA gene analyses. A Roizmanbacteria-specific quantitative PCR assay allowed us to track its abundance over the course of 1 year within eight groundwater wells along a 5.4 km hillslope transect, where Roizmanbacteria reached maximum relative abundances of 2.3%. In-depth genomic analyses suggested that Cand. Roizmanbacterium ADI133 is a lactic acid fermenter, potentially able to utilize a range of complex carbon substrates, including cellulose. We hypothesize that it attaches to host cells using a trimeric autotransporter adhesin and inhibits their cell wall biosynthesis using a toxin–antitoxin system. Network analyses based on correlating Cand. Roizmanbacterium ADI133 abundances with amplicon sequencing-derived microbial community profiles suggested one potential host organism, classified as a member of the class Thermodesulfovibrionia (Nitrospirae). By providing lactate as an electron donor Cand. Roizmanbacterium ADI133 potentially mediates the transfer of carbon to other microorganisms and thereby is an important connector in the microbial community.  相似文献   
128.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
129.
During male–male competition, evolution can favor alternative reproductive tactics. This often results in a dominant morph that holds a resource, such as a nest for egg laying, which competes with a smaller sneaker morph that reproduces by stealing fertilizations. The salinity environment can influence male growth rates, for example, via osmoregulatory costs, which in turn may influence the use of sneaker tactics for small males competing for mating opportunities. Salinity can also affect sperm directly; however, little is known of how salinity influences sneaker tactics through sperm performance. We sampled males of the invasive round goby (Neogobius melanostomus) from two environments, a freshwater river and a brackish estuary. This fish has two male morphs: nest‐holding dark males and non‐nest‐holding light males. We examined the role of water salinity of 0, 8, and 16 on sperm performance and found that for estuarine males, a salinity of 0 reduced sperm velocity compared to a salinity of 8 and 16. Riverine males had low velocity in all salinities. Sperm viability also decreased by over 30% in 0 salinity, compared to 8 and 16, for fish from both environments. Gobies produce ejaculate contents in specialized glands that could in theory shield sperm in an adverse environment. However, gland contents did not improve sperm performance in our tests. Body mass and age estimates indicate that riverine males invested more in somatic growth compared to estuarine males. Estuarine light morph males had a high enough gonadosomatic index to indicate sneaker tactics. We propose that when sperm performance is low, such as for the riverine males, sneaker tactics are ineffective and will be selected against or phenotypically suppressed. Instead, we interpret the increased investment in somatic growth found in riverine males as a life‐history decision that is advantageous when defending a nest in the next reproductive season.  相似文献   
130.

Extraintestinal pathogenic Escherichia coli (ExPEC) cause a wide range of clinical diseases such as bacteremia and urinary tract infections. The increase of multidrug resistant ExPEC strains is becoming a major concern for the treatment of these infections and E. coli has been identified as a critical priority pathogen by the WHO. Therefore, the development of vaccines has become increasingly important, with the surface lipopolysaccharide constituting a promising vaccine target. This study presents genetic and structural analysis of clinical urine isolates from Switzerland belonging to the serotype O25. Approximately 75% of these isolates were shown to correspond to the substructure O25B only recently described in an emerging clone of E. coli sequence type 131. To address the high occurrence of O25B in clinical isolates, an O25B glycoconjugate vaccine was prepared using an E. coli glycosylation system. The O antigen cluster was integrated into the genome of E. coli W3110, thereby generating an E. coli strain able to synthesize the O25B polysaccharide on a carrier lipid. The polysaccharide was enzymatically conjugated to specific asparagine side chains of the carrier protein exotoxin A (EPA) of Pseudomonas aeruginosa by the PglB oligosaccharyltransferase from Campylobacter jejuni. Detailed characterization of the O25B-EPA conjugate by use of physicochemical methods including NMR and GC-MS confirmed the O25B polysaccharide structure in the conjugate, opening up the possibility to develop a multivalent E. coli conjugate vaccine containing O25B-EPA.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号