首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5058篇
  免费   373篇
  国内免费   1篇
  2023年   33篇
  2022年   47篇
  2021年   121篇
  2020年   88篇
  2019年   104篇
  2018年   118篇
  2017年   100篇
  2016年   172篇
  2015年   265篇
  2014年   294篇
  2013年   381篇
  2012年   456篇
  2011年   388篇
  2010年   273篇
  2009年   233篇
  2008年   315篇
  2007年   308篇
  2006年   276篇
  2005年   239篇
  2004年   197篇
  2003年   209篇
  2002年   168篇
  2001年   51篇
  2000年   54篇
  1999年   49篇
  1998年   27篇
  1997年   33篇
  1996年   39篇
  1995年   32篇
  1994年   28篇
  1993年   27篇
  1992年   36篇
  1991年   28篇
  1990年   29篇
  1989年   22篇
  1988年   23篇
  1987年   17篇
  1986年   15篇
  1985年   18篇
  1984年   12篇
  1983年   8篇
  1982年   11篇
  1981年   8篇
  1980年   9篇
  1979年   10篇
  1978年   11篇
  1977年   7篇
  1975年   5篇
  1974年   7篇
  1973年   10篇
排序方式: 共有5432条查询结果,搜索用时 15 毫秒
991.
Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non‐homologous end‐joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis‐dependent microhomology‐mediated end‐joining (SD‐MMEJ) activities. Genome‐wide analysis of the integration loci and junction sequences validated the prevalent use of the SD‐MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD‐MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384–396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.  相似文献   
992.
993.
Nerve Growth Factor (NGF) and its receptors TrkA and p75 are expressed in physiological states in the anterior and posterior segments of the human eye, where they exert several tissue-specific functions. The roles played by NGF in the homeostasis of the eye and in vision are, therefore, crucial and have been widely investigated both in vitro and in vivo, with growing evidence of an NGF-pathway alteration in several ocular diseases. In this review we describe the functions of NGF in health and diseases states of the eye, and discuss the potential therapeutic effectiveness of NGF in preliminary clinical reports performed in severe ocular diseases unresponsive to any standard treatment. In fact, pharmacodynamic studies showing that NGF administered topically on the ocular surface affects not only the ocular surface but is also able to reach the retina, optic nerve and brain, recently opened new perspectives for the treatment of challenging ocular surface diseases, optic nerve diseases, and degenerative diseases of the retina currently lacking an effective therapy.  相似文献   
994.
The cytochrome (cyt) bc(1) complex (cyt bc(1)) plays a major role in the electrogenic extrusion of protons across the membrane responsible for the proton motive force to produce ATP. Proton-coupled electron transfer underlying the catalysis of cyt bc(1) is generally accepted, but the molecular basis of coupling and associated proton efflux pathway(s) remains unclear. Herein we studied Zn(2+)-induced inhibition of Rhodobacter capsulatus cyt bc(1) using enzyme kinetics, isothermal titration calorimetry (ITC), and electrochemically induced Fourier transform infrared (FTIR) difference spectroscopy with the purpose of understanding the Zn(2+) binding mechanism and its inhibitory effect on cyt bc(1) function. Analogous studies were conducted with a mutant of cyt b, E295, a residue previously proposed to bind Zn(2+) on the basis of extended X-ray absorption fine-structure spectroscopy. ITC analysis indicated that mutation of E295 to valine, a noncoordinating residue, results in a decrease in Zn(2+) binding affinity. The kinetic study showed that wild-type cyt bc(1) and its E295V mutant have similar levels of apparent K(m) values for decylbenzohydroquinone as a substrate (4.9 ± 0.2 and 3.1 ± 0.4 μM, respectively), whereas their K(I) values for Zn(2+) are 8.3 and 38.5 μM, respectively. The calorimetry-based K(D) values for the high-affinity site of cyt bc(1) are on the same order of magnitude as the K(I) values derived from the kinetic analysis. Furthermore, the FTIR signal of protonated acidic residues was perturbed in the presence of Zn(2+), whereas the E295V mutant exhibited no significant change in electrochemically induced FTIR difference spectra measured in the presence and absence of Zn(2+). Our overall results indicate that the proton-active E295 residue near the Q(o) site of cyt bc(1) can bind directly to Zn(2+), resulting in a decrease in the electron transferring activity without changing drastically the redox potentials of the cofactors of the enzyme. We conclude that E295 is involved in proton efflux coupled to electron transfer at the Q(o) site of cyt bc(1).  相似文献   
995.
The protein Numb does not live up to its name. This passive-sounding protein is anything but spent. Originally identified as a cell-fate determinant in Drosophila development, Numb received a good deal of attention as an inhibitor of the Notch receptor signaling pathway. It turns out, however, that Numb does a lot more than simply regulate Notch. It has been implicated in a variety of biochemical pathways connected with signaling (it regulates Notch-, Hedgehog- and TP53-activated pathways), endocytosis (it is involved in cargo internalization and recycling), determination of polarity (it interacts with the PAR complex, and regulates adherens and tight junctions), and ubiquitination (it exploits this mechanism to regulate protein function and stability). This complex biochemical network lies at the heart of Numb's involvement in diverse cellular phenotypes, including cell fate developmental decisions, maintenance of stem cell compartments, regulation of cell polarity and adhesion, and migration. Considering its multifaceted role in cellular homeostasis, it is not surprising that Numb has been implicated in cancer as a tumor suppressor. Our major goal here is to explain the cancer-related role of Numb based on our understanding of its role in cell physiology. We will attempt to do this by reviewing the present knowledge of Numb at the biochemical and functional level, and by integrating its apparently heterogeneous functions into a unifying scenario, based on our recently proposed concept of the "endocytic matrix". Finally, we will discuss the role of Numb in the maintenance of the normal stem cell compartment, as a starting point to interpret the tumor suppressor function of Numb in the context of the cancer stem cell hypothesis.  相似文献   
996.
Type 1 non-symbiotic rice hemoglobin (rHb1) shows bis-histidyl heme hexacoordination and is capable of binding diatomic ligands reversibly. The biological function is as yet unclear, but the high oxygen affinity makes it unlikely to be involved in oxygen transport. In order to gain insight into possible physiological roles, we have studied CO rebinding kinetics after laser flash photolysis of rHb1 in solution and encapsulated in silica gel. CO rebinding to wt rHb1 in solution occurs through a fast geminate phase with no sign of rebinding from internal docking sites. Encapsulation in silica gel enhances migration to internal cavities. Site-directed mutagenesis of FB10, a residue known to have a key role in the regulation of hexacoordination and ligand affinity, resulted in substantial effects on the rebinding kinetics, partly inhibiting ligand exit to the solvent, enhancing geminate rebinding and enabling ligand migration within the internal cavities. The mutation of HE7, one of the histidyl residues involved in the hexacoordination, prevents hexacoordination, as expected, but also exposes ligand migration through a complex system of cavities. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   
997.
Beta-2 microglobulin (β2m) is the light chain of Class I major histocompatibility complex (MHC-I) complex. β2m is an intrinsically amyloidogenic protein capable of forming amyloid fibrils in vitro and in vivo. β2m displays the typical immunoglobulin-like fold with a disulphide bridge (Cys25-Cys80) cross-linking the two β-sheets. Engineering of the loop comprised between β-strands D and E has shown that mutations in this region affect protein structure, fold stability, folding kinetics and amyloid aggregation properties. Such overall effects have been related to the DE loop backbone structure, which presents a strained conformation in the wild-type (wt) protein, and a type I β-turn in the W60G mutant. Here, we report a biophysical and structural characterization of the K58P-W60G β2m mutant, where a Pro residue has been introduced in the type I β-turn i + 1 position. The K58P-W60G mutant shows improved chemical and temperature stability and faster folding relative to wt β2m. The crystal structure (1.25 ? resolution) shows that the Cys25-Cys80 disulphide bridge is unexpectedly severed, in agreement with electrospray ionization-mass spectrometry (ESI-MS) spectra that indicate that a fraction of the purified protein lacks the internal disulphide bond. These observations suggest a stabilizing role for Pro58, and stress a crucial role for the DE loop in determining β2m biophysical properties.  相似文献   
998.
Mammalian CLC proteins comprise both Cl- channels and Cl-/H+ antiporters that carry out fundamental physiological tasks by transporting Cl- across plasma membrane and intracellular compartments. The NO3- over Cl- preference of a plant CLC transporter has been pinpointed to a conserved serine residue located at Scen and it is generally assumed that the other two binding sites of CLCs, Sext and Sin, do not substantially contribute to anion selectivity. Here we show for the Cl-/H+ antiporter CLC-5 that the conserved and extracellularly exposed Lys210 residue is critical to determine the anion specificity for transport activity. In particular, mutations that neutralize or invert the charge at this position reverse the NO3- over Cl- preference of WT CLC-5 at a concentration of 100 mm, but do not modify the coupling stoichiometry with H+. The importance of the electrical charge is shown by chemical modification of K210C with positively charged cysteine-reactive compounds that reintroduce the WT preference for Cl-. At saturating extracellular anion concentrations, neutralization of Lys210 is of little impact on the anion preference, suggesting an important role of Lys210 on the association rate of extracellular anions to Sext.  相似文献   
999.
This pilot study was carried out to evaluate the occurrence of Clostridium difficile in marine environments and in edible shellfish. Samples of seawater, sediment, and zooplankton were collected at five sampling stations in the Gulf of Naples. Six samples of edible shellfish, furthermore, were obtained: two from mussel farms and four from wholesalers. The isolation and the characterization of C. difficile strains were carried out using selective media and molecular techniques, respectively. C. difficile was isolated from nine of the 21 samples investigated. Shellfish and zooplankton showed the highest prevalence of positive samples. No C. difficile was detected in marine sediment. Majority of the C. difficile isolates were toxin A/B positive. Six known different PCR ribotypes (003, 005, 009, 010, 056, and 066) were identified, whereas one strain may represent a new PCR ribotype. C. difficile may be present in the marine environment in Southern Italy, including shellfish and zooplankton. This study is reporting the isolation of C. difficile from zooplankton, clams, and mussels and pointing out a new possible route to exposure to C. difficile of healthy individuals in the community.  相似文献   
1000.
Desulfovibrio sp. A2 is an anaerobic gram-negative sulfate-reducing bacterium with remarkable tolerance to copper. It was isolated from wastewater effluents of a zinc smelter at the Urals. Here, we report the 4.2-Mb draft genome sequence of Desulfovibrio sp. A2 and identify potential copper resistance mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号