首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5194篇
  免费   355篇
  国内免费   1篇
  2023年   33篇
  2022年   49篇
  2021年   126篇
  2020年   96篇
  2019年   106篇
  2018年   123篇
  2017年   106篇
  2016年   180篇
  2015年   268篇
  2014年   302篇
  2013年   386篇
  2012年   465篇
  2011年   390篇
  2010年   270篇
  2009年   240篇
  2008年   325篇
  2007年   308篇
  2006年   273篇
  2005年   240篇
  2004年   199篇
  2003年   210篇
  2002年   167篇
  2001年   49篇
  2000年   48篇
  1999年   50篇
  1998年   26篇
  1997年   28篇
  1996年   36篇
  1995年   31篇
  1994年   24篇
  1993年   25篇
  1992年   35篇
  1991年   32篇
  1990年   28篇
  1989年   24篇
  1988年   18篇
  1987年   12篇
  1986年   19篇
  1985年   15篇
  1984年   13篇
  1982年   10篇
  1981年   10篇
  1979年   13篇
  1978年   11篇
  1977年   11篇
  1976年   13篇
  1975年   12篇
  1974年   14篇
  1968年   14篇
  1967年   12篇
排序方式: 共有5550条查询结果,搜索用时 15 毫秒
101.
Heterogeneity in resource availability and quality can trigger spatial patterns in the expression of sexually selected traits such as body mass and weaponry. While relationships between habitat features and phenotypic quality are well established at broad geographical scales, information is poor on spatial patterns at finer, intrapopulation scales. We analyzed biometric data collected on 1965 red deer Cervus elaphus males over 20 years from a nonmigratory population living on two sides of a mountainous ridge, with substantial differences in land cover and habitat quality but similar climate and population density. We investigate spatial patterns in (i) body mass, (ii) antler mass, and (iii) antler investment. We also tested for site‐ and age‐specific patterns in allometric relationship between body mass and antler mass. Statistically significant fine‐scale spatial variations in body mass, antler mass, and, to a lesser extent, antler allocation matched spatial differences in land cover. All three traits were greater in the northern slope, characterized by higher habitat heterogeneity and greater availability of open habitats, than in the southern slope. Moreover, the allometric relationship between body mass and antler mass differed among age‐classes, in a pattern that was consistent between the two mountain slopes. Our results support the occurrence of spatial patterns in the expression of individual attributes also at a fine, intrapopulation scale. Our findings emphasize the role of environmental heterogeneity in shaping spatial variations of key life‐history traits, with potential consequences for reproductive success.  相似文献   
102.
Somatic embryogenesis of Abies alba (Mill.) has significant potential to become an effective method for vegetative propagation of this species. To induce somatic embryogenesis in A. alba, the influence of the mother tree, sampling dates, and cold treatment storage of cones were examined. The initiation frequencies ranged from 1.7% to 16.6%. The sampling date and cone storage, but not the mother tree, had a significant effect on the initiation of embryogenic cultures. Storage of embryogenic cell lines was tested through cryopreservation for 6 yr. Four out of 12 cryostored embryogenic cell lines recovered, and the regeneration of cotyledonary embryos was obtained with two cell lines. The ability of embryogenic cell masses to produce somatic embryos and the mean number of cotyledonary embryos were higher when the maturation protocol was based on embryogenic suspensions dispersed on filter paper. The properly developed germinants were obtained only from maturation media where 32 μM abscisic acid was used, being 16.2% when polyethylene glycol (PEG) was not present and 1.8% when supplemented with 10% (w/v) PEG, respectively. The present study provides evidence that it is possible to cryopreserve A. alba embryogenic cultures while maintaining their maturing ability for the lengthy period (6 yr) needed for progeny testing of field-grown trees. Therefore, our findings are important for further studies and advanced breeding work of the species; however, the conversion of germinants into ex vitro conditions still remains a significant challenge.  相似文献   
103.
The GPR120 gene (also known as FFAR4 or O3FAR1) encodes for a functional omega-3 fatty acid receptor/sensor that mediates potent insulin sensitizing effects by repressing macrophage-induced tissue inflammation. For its functional role, GPR120 could be considered a potential target gene in animal nutrigenetics. In this work we resequenced the porcine GPR120 gene by high throughput Ion Torrent semiconductor sequencing of amplified fragments obtained from 8 DNA pools derived, on the whole, from 153 pigs of different breeds/populations (two Italian Large White pools, Italian Duroc, Italian Landrace, Casertana, Pietrain, Meishan, and wild boars). Three single nucleotide polymorphisms (SNPs), two synonymous substitutions and one in the putative 3′-untranslated region (g.114765469C > T), were identified and their allele frequencies were estimated by sequencing reads count. The g.114765469C > T SNP was also genotyped by PCR-RFLP confirming estimated frequency in Italian Large White pools. Then, this SNP was analyzed in two Italian Large White cohorts using a selective genotyping approach based on extreme and divergent pigs for back fat thickness (BFT) estimated breeding value (EBV) and average daily gain (ADG) EBV. Significant differences of allele and genotype frequencies distribution was observed between the extreme ADG-EBV groups (P < 0.001) whereas this marker was not associated with BFT-EBV.  相似文献   
104.
The methods for symmetry line detection presented in the literature are typically suited to analyse symmetric upright postures, both standing and seated. The proposed method focuses on the symmetry line detection in subjects assuming asymmetric postures in which this line falls far outside the sagittal plane. The proposed approach evaluates the symmetry line by means of an autoregressive process in order to determine the set of planes suited to slice the back coherently with its geometric spatial configuration. The method is analysed assuming the cutaneous marking as reference and it is compared with a previous one, also developed by these authors. Results are analysed and critically discussed.  相似文献   
105.
106.
N-terminal methionine excision (NME) and N-terminal acetylation (NTA) are two of the most common protein post-translational modifications. NME is a universally conserved activity and a highly specific mechanism across all life forms. NTA is very common in eukaryotes but occurs rarely in prokaryotes. By analyzing data sets from yeast, mammals and bacteria (including 112 million spectra from 57 bacterial species), the largest comparative proteogenomics study to date, it is shown that previous assumptions/perceptions about the specificity and purposes of NME are not entirely correct. Although NME, through the universal enzymatic specificity of the methionine aminopeptidases, results in the removal of the initiator Met in proteins when the second residue is Gly, Ala, Ser, Cys, Thr, Pro, or Val, the comparative genomic analyses suggest that this specificity may vary modestly in some organisms. In addition, the functional role of NME may be primarily to expose Ala and Ser rather than all seven of these residues. Although any of this group provide “stabilizing” N termini in the N-end rule, and de facto leave the remaining 13 amino acid types that are classed as “destabilizing” (in higher eukaryotes) protected by the initiator Met, the conservation of NME-substrate proteins through evolution suggests that the other five are not crucially important for proteins with these residues in the second position. They are apparently merely inconsequential players (their function is not affected by NME) that become exposed because their side chains are smaller or comparable to those of Ala and Ser. The importance of exposing mainly two amino acids at the N terminus, i.e. Ala and Ser, is unclear but may be related to NTA or other post-translational modifications. In this regard, these analyses also reveal that NTA is more prevalent in some prokaryotes than previously appreciated.Although methionine is used to initiate protein synthesis for essentially all proteins, it is subsequently removed in a large percentage of cases, either by cleavage of an N-terminal “signal ” peptide (as part of cellular translocation mechanisms or precursor activations) or by the action of specific methionine aminopeptidases (MetAPs). Approximately two-thirds of the proteins in any proteome are potential substrates for the latter N-terminal methionine excision (NME),1 and MetAPs appear in all organisms from bacteria to eukaryotes (1). The second, or P2, amino acid in protein substrates is crucially important for NME because MetAP specificity mainly depends on the nature of this residue, a selectivity that is conserved across all species (15). These enzymes generally excise the N-terminal Met when the second residue is Gly, Ala, Ser, Thr, Cys, Pro, or Val (3, 6, 7), which are the amino acids smallest in size (based on radius of gyration of the side chain (8)). NME is a necessary process for proper cell functioning; it is included in the minimal genome set of eubacteria (9). Eukaryotes contain two MetAPs derived from a version in bacteria (MetAP1), and another found in archea (MetAP2) (11). Just as the deletion of MetAP eubacteria is lethal, the deletion of both MetAPs in yeast is also lethal (10).In 1988, Arfin and Bradshaw (2) observed that the specificity of NME coincided with that of the N-end rule (NER) (12, 13), a ubiquitin-dependent protein degradation process that is based on the recognition of N-terminal residues. The stabilizing residues for the NER include Gly, Ala, Ser, Cys, Thr, Pro, and Val and, with the exception of Met, the destabilizing residues are all found to be in the class of P2-residues that are not substrates for the MetAPs. This suggested that NME acts to release Met from proteins whose stability is unaffected by the NER creating at the same time a second class of proteins, who have the potential for regulated turnover downstream of the cotranslational processing, when, and if, the N-terminal Met is subsequently removed by a mechanism other than the cotranslational action of the MetAPs. However, despite extensive studies, this type of programmed protein turnover (requiring downstream removal of Met) has not been demonstrated to occur. An implication of this correlation is that exposing of the stabilizing residues may also contribute to increasing their lifetime.The stabilizing residues exposed by the action of the MetAPs can be further modified. The most extensive of these reactions is N-terminal acetylation (NTA), which can occur on as much as 70–80% of the mass of the soluble protein in eukaryotes. Although the specificity of the N-acetyltransferase (NAT) responsible is not as rigid as the MetAPs, the principal substrates in the stabilizing class are usually the four smallest residues (Gly, Ala, Ser, and Thr) (6, 14). A second class of NATs can also modify the retained Met when the adjacent residues are Asp, Glu or Asn (15). The functional importance of this modification (in either case) is not known although it has been suggested that it may exert a protective effect against spurious aminopeptidase cleavages. Recently, Hwang et al. (16) have extended the NER to include Nα-acetylated termini as also destabilizing thus providing another possible function for this modification. In contrast, to date, very few instances of Nα-acetylation have been observed in bacteria. Other modifications can also occur in both eukaryotes and prokaryotes although they are generally much more limited in scope.The specificity of the MetAPs suggest an apparent connection between NME and protein degradation. However, this connection has never been examined using high-throughput mass spectrometric data or a comparative genomics approach; thus it remains unclear whether exposing these stabilizing residues contributes to increasing protein half-life and thus represents a primary purpose of NME. (The connection between NME and NER in bacteria, which has an NER with a somewhat different profile (17), is even more obscure.) Recent studies provide some examples where disruption of NME via a single-residue substitution in the P2 position causes protein degradation (1820); however, some of these experimental results are in conflict with the NER (13). Giglione et al. (20) have shown that NME triggers degradation of D2 protein in Caenorhabditis reinhardtii in the PSII complex after replacing the second (stabilizing) Thr residue by another amino acid to prevent NME. This replacement results in early degradation of D2 and instability of the PSII complex. From this, Giglione et al. (20) postulated that NME determines protein life-span via currently unknown machinery. However, because Bachmair et al. (12) classified Met as a stabilizing residue, it is not entirely clear why substituting one stabilizing residue (Met) by another one (Gly, Ala, Ser, Cys, Thr, Pro, or Val) should affect protein stability and the substitution may have other deleterious effects that are manifested in different ways.The logic for analyzing NME and NER is shown in Fig. 1. NME exposes 7 different residues as new N termini of proteins. The natural conclusion that has become a dogma of NME is that these seven residues are exposed for a functional reason. The broad scope of NME suggests a universal reason that surpasses any particular protein''s role. In turn the comparative genomics postulate (function suggests conservation) leads to the conclusion that the seven residues should be evolutionarily conserved at position P2 of proteins. However, because only two out of the seven residues are conserved, we argue that one of the two assumptions in Fig. 1A must be incorrect and put forth the alternative logic depicted in Fig. 1B, which matches our analysis across dozens of species. According to this logic, NME accomplishes the goal of exposing Ala and Ser by exposing all residues with side chains smaller or comparable in size to Ala and Ser (G, T, V, P, and C). These residues are thus inconsequential players that are not functionally important (and are not evolutionarily conserved) at P2.Open in a separate windowFig. 1.Two alternative cases for NME function. A, NME exposes seven residues to be new N termini of proteins. Because this is presumably for some functional reason, the conventional assumption is that all seven residues must have functional importance as N termini. By the comparative genomics postulate (as defined in the text), evolutionary conservation of all seven at P2 should be observed. If all of these residues are not conserved, one of the two assumptions must be incorrect; either not all seven residues are important or the comparative genomics postulate is invalid. B, Given that the comparative genomics postulate holds, and only two of the seven residues are of functional importance as N termini, then the other five residues are inconsequential players and only these two residues should be evolutionarily conserved.In this report, we examine the connection between the specificity of NME and stabilizing residues of NER. In doing so, data sets from bacteria (including 112 million mass spectrometric spectra from 57 species), yeast, and mammals, were analyzed for N-terminal peptides both with respect to the excision (or not) of initiator Met residues and the distribution of P2-residues. The results reveal a strong preference of Ala and Ser as P2-residues. However, this process does not appear to be linked to the NER other than being generally compatible with it. These studies also demonstrate a much greater than expected number of Nα-acetylation events in some bacteria.  相似文献   
107.
Information regarding the molluscs in this dataset is based on the Rauschert dredge samples collected during the Latitudinal Gradient Program (LGP) on board the R/V “Italica” in the Ross Sea (Antarctica) in the austral summer 2004. A total of 18 epibenthic dredge deployments/samplings have been performed at four different locations at depths ranging from 84 to 515m by using a Rauschert dredge with a mesh size of 500μm. In total 8,359 specimens have been collected belonging to a total of 161 species. Considering this dataset in terms of occurrences, it corresponds to 505 discrete distributional records (incidence data). Of these, in order of abundance, 5,965 specimens were Gastropoda (accounting for 113 species), 1,323 were Bivalvia (accounting for 36 species), 949 were Aplacophora (accounting for 7 species), 74 specimens were Scaphopoda (3 species), 38 were Monoplacophora (1 species) and, finally, 10 specimens were Polyplacophora (1 species). This data set represents the first large-scale survey of benthic micro-molluscs for the area and provides important information about the distribution of several species, which have been seldom or never recorded before in the Ross Sea. All vouchers are permanently stored at the Italian National Antarctic Museum (MNA), Section of Genoa, enabling future comparison and crosschecking. This material is also currently under study, from a molecular point of view, by the barcoding project “BAMBi” (PNRA 2010/A1.10).  相似文献   
108.
Quantitative information on population size, structure and dynamics are urgently needed for assessing species extinction risk and developing monitoring measures, especially for beetles belonging to the threatened guild of saproxylic organisms. Here freshly cut log piles (FCLP) were tested for the monitoring of the longhorn beetle Morimus asper (Sulzer, 1776) (Coleoptera: Cerambycidae). Novel mathematical models based on presence–absence or count data were compared with the most commonly used capture–recapture methods to investigate if less invasive and easier approaches may be suitable for large-scale monitoring of this species and other large saproxylic beetles. The use of FCLP as bait was reliable to detect the presence and abundance of M. asper, and capture events were not influenced by the phenomena of trap-happiness or trap-shyness. In order to obtain accurate presence–absence estimates of M. asper at a reasonable cost piles of at least 0.25 m3 are suggested. Models which take into account the abundance of the species without marking individuals were the best compromise between costs and accuracy of estimation. Therefore, a reliable assessment of the population size of M. asper, can be based on count data without marking individuals. Because FCLP attract adults of M. asper and other saproxylic beetles, they could act also as potential ecological traps if chipped and/or removed after the sampling season. Therefore, if FCLP are used in monitoring as a part of conservation programmes, the piles should be left until completely decayed.  相似文献   
109.
Powdery mildew is the most widespread disease of pea (Pisum sativum L.) and causes severe economic losses worldwide. Recessively inherited er1 powdery mildew resistance, successfully used for decades in pea breeding programs, has recently been shown to originate from the loss of function of the PsMLO1 gene. Five er1 alleles, each corresponding to a different PsMLO1 null mutation, have been characterized to date in pea germplasm. In order to aid er1 selection, we aimed to identify functional markers which target PsMLO1 polymorphisms directly responsible for the resistant phenotype. Highly informative cleaved amplified polymorphic sequence (CAPS), derived cleaved amplified polymorphic sequence (dCAPS), sequence tagged site (STS) and high-resolution melting (HRM) markers were developed which enable the selection of each of the five er1 alleles. Taken together, the results described here provide a powerful tool for breeders, overcoming limitations of previously reported er1-linked markers due to the occurrence of recombination with the resistance locus and/or the lack of polymorphism between parental genotypes. The HRM marker er1-5/HRM54 reported here, targeting a mutagenesis-induced er1 allele recently described by us, does not require manual processing after PCR amplification, and is therefore suitable for large-scale breeding programs based on high-throughput automated screening.  相似文献   
110.
The brain and meningeal spaces are protected from bacterial invasion by the blood–brain barrier, formed by specialized endothelial cells and tight intercellular junctional complexes. However, once in the bloodstream, Neisseria meningitidis crosses this barrier in about 60% of the cases. This highlights the particular efficacy with which N. meningitidis targets the brain vascular cell wall. The first step of central nervous system invasion is the direct interaction between bacteria and endothelial cells. This step is mediated by the type IV pili, which induce a remodelling of the endothelial monolayer, leading to the opening of the intercellular space. In this review, strategies used by the bacteria to survive in the bloodstream, to colonize the brain vasculature and to cross the blood–brain barrier will be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号