首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2513篇
  免费   238篇
  国内免费   5篇
  2756篇
  2024年   1篇
  2023年   23篇
  2022年   37篇
  2021年   56篇
  2020年   24篇
  2019年   57篇
  2018年   59篇
  2017年   63篇
  2016年   105篇
  2015年   182篇
  2014年   192篇
  2013年   197篇
  2012年   262篇
  2011年   234篇
  2010年   150篇
  2009年   127篇
  2008年   175篇
  2007年   169篇
  2006年   145篇
  2005年   125篇
  2004年   93篇
  2003年   92篇
  2002年   88篇
  2001年   14篇
  2000年   9篇
  1999年   10篇
  1998年   24篇
  1997年   5篇
  1996年   4篇
  1995年   8篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有2756条查询结果,搜索用时 15 毫秒
61.
The microtubule cytoskeleton is crucial for the internal organization of eukaryotic cells. Several microtubule-associated proteins link microtubules to subcellular structures. A subclass of these proteins, the plus end–binding proteins (+TIPs), selectively binds to the growing plus ends of microtubules. Here, we reconstitute a vertebrate plus end tracking system composed of the most prominent +TIPs, end-binding protein 1 (EB1) and CLIP-170, in vitro and dissect their end-tracking mechanism. We find that EB1 autonomously recognizes specific binding sites present at growing microtubule ends. In contrast, CLIP-170 does not end-track by itself but requires EB1. CLIP-170 recognizes and turns over rapidly on composite binding sites constituted by end-accumulated EB1 and tyrosinated α-tubulin. In contrast to its fission yeast orthologue Tip1, dynamic end tracking of CLIP-170 does not require the activity of a molecular motor. Our results demonstrate evolutionary diversity of the plus end recognition mechanism of CLIP-170 family members, whereas the autonomous end-tracking mechanism of EB family members is conserved.  相似文献   
62.
63.

Purpose

Mixtures of organic chemicals are a part of virtually all life cycles, but LCI data exist for only relatively few chemicals. Thus, estimation methods are required. However, these are often either very time-consuming or deliver results of low quality. This article compares existing and new methods in two scenarios and recommends a tiered approach of different methods for an efficient estimation of the production impacts of chemical mixtures.

Methods

Four approaches to estimate impacts of a large number of chemicals are compared in this article: extrapolation from existing data, substitution with generic datasets on chemicals, molecular structure-based models (MSMs, in this case the Finechem tool), and using process-based estimation methods. Two scenarios were analyzed as case studies: soft PVC plastic and a tobacco flavor, a mixture of 20 chemicals.

Results

Process models have the potential to deliver the best estimations, as existing information on production processes can be integrated. However, their estimation quality suffers when such data are not available and they are time-consuming to apply, which is problematic when estimating large numbers of chemicals. Extrapolation from known to unknown components and use of generic datasets are generally not recommended. In both case studies, these two approaches significantly underestimated the impacts of the chemicals compared to the process models. MSMs were generally able to estimate impacts on the same level as the more complex process models. A tiered approach using MSMs to determine the relevance of individual components in mixtures and applying process models to the most relevant components offered a simpler and faster estimation process while delivering results on the level of most process models.

Conclusions

The application of the tiered combination of MSMs and process models allows LCA practitioners a relatively fast and simple estimation of the LCIA results of chemicals, even for mixtures with a large number of components. Such mixtures previously presented a problem, as the application of process models for all components was very time-consuming, while the existing, simple approaches were shown to be inadequate in this study. We recommend the tiered approach as a significant improvement over previous approaches for estimating LCA results of chemical mixtures.  相似文献   
64.
Recombination, the precise physical breakage and rejoining of DNA between homologous chromosomes, plays a central role in mediating the orderly segregation of meiotic chromosomes in most eukaryotes. Despite its importance, the factors that control the number and placement of recombination events within a cell remain poorly defined. The rate of recombination exhibits remarkable species specificity, and, within a species, recombination is affected by the physical size of the chromosome, chromosomal location, proximity to other recombination events (i.e., chiasma interference), and, intriguingly, the sex of the transmitting parent. To distinguish between simple genetic and nongenetic explanations of sex-specific recombination differences in mammals, we compared recombination in meiocytes from XY sex-reversed and XO females with that in meiocytes from XX female and XY male mice. The rate and pattern of recombination in XY and XO oocytes were virtually identical to those in normal XX females, indicating that sex, not genotype, is the primary determinant of meiotic recombination patterns in mammals.  相似文献   
65.
66.
ObjectiveActivated platelets release serotonin at sites of inflammation where it acts as inflammatory mediator and enhances recruitment of neutrophils. Chronic treatment with selective serotonin reuptake inhibitors (SSRI) depletes the serotonin storage pool in platelets, leading to reduced leukocyte recruitment in murine experiments. Here, we examined the direct and acute effects of SSRI on leukocyte recruitment in murine peritonitis.MethodsC57Bl/6 and Tph1−/− (Tryptophan hydroxylase1) mice underwent acute treatment with the SSRI fluoxetine or vehicle. Serotonin concentrations were measured by ELISA. Leukocyte rolling and adhesion on endothelium was analyzed by intravital microscopy in mesentery venules with and without lipopolysaccharide challenge. Leukocyte extravasation in sterile peritonitis was measured by flow cytometry of abdominal lavage fluid.ResultsPlasma serotonin levels were elevated 2 hours after fluoxetine treatment (0.70±0.1 µg/ml versus 0.27±0.1, p = 0.03, n = 14), while serum serotonin did not change. Without further stimulation, acute fluoxetine treatment increased the number of rolling leukocytes (63±8 versus 165±17/0.04 mm2min−1) and decreased their velocity (61±6 versus 28±1 µm/s, both p<0.0001, n = 10). In Tph1−/− mice leukocyte rolling was not significantly influenced by acute fluoxetine treatment. Stimulation with lipopolysaccharide decreased rolling velocity and induced leukocyte adhesion, which was enhanced after fluoxetine pretreatment (27±3 versus 36±2/0.04 mm2, p = 0.008, n = 10). Leukocyte extravasation in sterile peritonitis, however, was not affected by acute fluoxetine treatment.ConclusionsAcute fluoxetine treatment increased plasma serotonin concentrations and promoted leukocyte-endothelial interactions in-vivo, suggesting that serotonin is a promoter of acute inflammation. E-selectin was upregulated on endothelial cells in the presence of serotonin, possibly explaining the observed increase in leukocyte-endothelial interactions. However transmigration of neutrophils in sterile peritonitis was not affected by higher serotonin concentrations, indicating that the effect of fluoxetine was restricted to early steps in the leukocyte recruitment. Whether SSRI use in humans alters leukocyte recruitment remains to be investigated.  相似文献   
67.
The seasonal variations in community structure and cell morphology of pelagic procaryotes from a high mountain lake (Gossenköllesee, Austria) were studied by in situ hybridization with rRNA-targeted fluorescently labeled oligonucleotide probes (FISH) and image-analyzed microscopy. Compositional changes and biomass fluctuations within the assemblage were observed both in summer and beneath the winter ice cover and are discussed in the context of physicochemical and biotic parameters. Proteobacteria of the beta subclass (beta-proteobacteria) formed a dominant fraction of the bacterioplankton (annual mean, 24% of the total counts), whereas alpha-proteobacteria were of similar relative importance only during spring (mean, 11%). Bacteria of the Cytophaga-Flavobacterium cluster, although less abundant, constituted the largest fraction of the filamentous morphotypes during most of the year, thus contributing significantly to the total microbial biomass. Successive peaks of threadlike and rod-shaped archaea were observed during autumn thermal mixing and the period of ice cover formation, respectively. A set of oligonucleotide probes targeted to single phylotypes was constructed from 16S rRNA-encoding gene clone sequences. Three distinct populations of uncultivated microbes, affiliated with the alpha- and beta-proteobacteria, were subsequently monitored by FISH. About one-quarter of all of the beta-proteobacteria (range, 6 to 53%) could be assigned to only two phylotypes. The bacterial populations studied were annually recurrent, seasonally variable, and vertically stratified, except during the periods of lake overturn. Their variability clearly exceeded the fluctuations of the total microbial assemblage, suggesting that the apparent stability of total bacterioplankton abundances may mask highly dynamic community fluctuations.Until recently, microbial ecologist studying aquatic bacteria faced a basic dilemma: they could either measure the abundance, biomass, growth rates, activity, etc. of the “average” bacterium under in situ conditions (e.g., see reference 13), ignoring the phylogenetic and physiological diversity of microbial communities, or they could isolate and ecophysiologically characterize individual bacterial strains (e.g., see reference 36) but were then not able to tell if these microorganisms were also common in the environment. Consequently, little knowledge has been gathered about the spatial and temporal abundance fluctuations of defined phylogenetic groups and of individual bacterial species in natural habitats. Molecular biological techniques used to identify microbes in environmental samples have recently provided new tools to study bacterioplankton biodiversity (e.g., see references 1, 9, 14, 15, and 19) and the in situ abundances of bacteria and archaea that could not be adequately distinguished before (2, 4, 5, 25). Microbiologists are now in a position to potentially elucidate the biogeography (24), population dynamics, and successions (28) not only of a few morphologically conspicuous microbes but of a large number of species, most of which might still be uncharacterized.Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes selectively visualizes bacterial cells with defined phylogenetic affiliations (3, 5). Based on a rapidly growing set of 16S (and, to a lesser extend, 23S) rRNA sequence data, it is probably the phylogenetically most sophisticated (22) approach for whole-cell in situ identification. On the other hand, FISH of plankton samples can be performed with minimal laboratory requirements (16), and evaluation relies on epifluorescence microscopy, which is a standard technique of aquatic microbial ecologists, e.g., for counting (30) and sizing (33) of picoplankton. In contrast to other identification approaches, FISH largely conserves the gestalt of the targeted microorganisms, i.e., their morphologies, cell sizes (26, 34), and cellular rRNA content (7, 32). So, despite the limitations of the method (as discussed in reference 5), its potential for the identification and cytometric analysis of planktonic microbes is just about to be recognized.Recent investigations have reported that various freshwater microbial communities are dominated by bacteria which are phylogenetically affiliated with the alpha and beta subclasses of the class Proteobacteria (alpha- and beta-proteobacteria, respectively) and with members of the Cytophaga-Flavobacterium cluster (2, 6, 16, 19). These observations were based on single or short-term sampling schemes. The instantaneous community composition of the bacterioplankton, however, may not be representative for different seasons, and the typical ranges of annual community variability remain to be established.The size distribution of planktonic bacteria, and particularly the appearance of filamentous cells, has come into the focus of aquatic microbial ecology in the context of studies of predator-prey interactions. It has been shown both in the laboratory (18, 37) and in field experiments (20) that the filamentous morphotype is a phenotypic adaptation of some microbes to protistan grazing, but there are probably numerous other causes for bacteria to elongate far beyond their typical sizes (e.g., see reference 23). Threadlike bacteria have been observed throughout the year in the plankton of a hypertrophic lake (41) but were also found in midwinter in an oligotropic alpine lake (31).In earlier studies, we demonstrated FISH to be an appropriate tool for the monitoring of spatial (2) and short-term temporal (26) dynamics of different phylogenetic groups of the planktonic microbial community in a high mountain lake. Here we report on the seasonal and vertical abundance distributions of pelagic members of Bacteria and Archaea in Gossenköllesee and analysis of the community structure at different levels of taxonomic resolution. We applied published domain- and group-specific oligonucleotide probes (5) but also used the sequence information from a 16S rRNA-encoding gene (rDNA) library obtained from Gossenköllesee bacterioplankton 1 year earlier to construct specific probes targeted at individual bacterial populations. Particular attention was paid to the changes in abundance and taxonomic composition of the filamentous bacterial morphotypes which were recognized as a permanently important fraction of the planktonic procaryotes in Gossenköllesee. Additionally, we monitored the seasonal changes in the biomass size distributions of the nonfilamentous fraction of the pelagic microbial community.  相似文献   
68.

Background  

Assortative mating patterns for mate quality traits like body size are often observed in nature. However, the underlying mechanisms that cause assortative mating patterns are less well known. Sexual selection is one important explanation for assortment, suggesting that i) one (usually the female) or both sexes could show preferences for mates of similar size or ii) mutual mate choice could resolve sexual conflict over quality traits into assortment. We tested these hypotheses experimentally in the socially monogamous cichlid fish Pelvicachromis taeniatus, in which mate choice is mutual.  相似文献   
69.
The biosynthetic gene clusters of the staphylococcal lantibiotics epidermin and gallidermin are distinguished by the presence of the unique genes epiH and gdmH, respectively. They encode accessory factors for the ATP-binding cassette transporters that mediate secretion of the antimicrobial peptides. Here, we show that gdmH also contributes to immunity to gallidermin but not to nisin. gdmH alone affected susceptibility to gallidermin only moderately, but it led to a multiplication of the immunity level mediated by the FEG immunity genes when cloned together with the gdmT gene, suggesting a synergistic activity of the H and FEG systems. gdmH-related genes were identified in the genomes of several bacteria, indicating an involvement in further cellular functions.  相似文献   
70.
Protease activity is tightly regulated in both normal and disease conditions. However, it is often difficult to monitor the dynamic nature of this regulation in the context of a live cell or whole organism. To address this limitation, we developed a series of quenched activity-based probes (qABPs) that become fluorescent upon activity-dependent covalent modification of a protease target. These reagents freely penetrate cells and allow direct imaging of protease activity in living cells. Targeted proteases are directly identified and monitored biochemically by virtue of the resulting covalent tag, thereby allowing unambiguous assignment of protease activities observed in imaging studies. We report here the design and synthesis of a selective, cell-permeable qABP for the study of papain-family cysteine proteases. This probe is used to monitor real-time protease activity in live human cells with fluorescence microscopy techniques as well as standard biochemical methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号