首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2510篇
  免费   241篇
  国内免费   5篇
  2756篇
  2024年   1篇
  2023年   23篇
  2022年   37篇
  2021年   56篇
  2020年   24篇
  2019年   57篇
  2018年   59篇
  2017年   63篇
  2016年   105篇
  2015年   182篇
  2014年   192篇
  2013年   197篇
  2012年   262篇
  2011年   234篇
  2010年   150篇
  2009年   127篇
  2008年   175篇
  2007年   169篇
  2006年   145篇
  2005年   125篇
  2004年   93篇
  2003年   92篇
  2002年   88篇
  2001年   14篇
  2000年   9篇
  1999年   10篇
  1998年   24篇
  1997年   5篇
  1996年   4篇
  1995年   8篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有2756条查询结果,搜索用时 0 毫秒
91.
Embryonic stem cell (ESC) technology provides attractive perspectives for generating unlimited numbers of somatic cells for disease modeling and compound screening. A key prerequisite for these industrial applications are standardized and automated systems suitable for stem cell processing. Here we demonstrate that mouse and human ESC propagated by automated culture maintain their mean specific growth rates, their capacity for multi-germlayer differentiation, and the expression of the pluripotency-associated markers SSEA-1/Oct-4 and Tra-1-60/Tra-1-81/Oct-4, respectively. The feasibility of ESC culture automation may greatly facilitate the use of this versatile cell source for a variety of biomedical applications.  相似文献   
92.
Photosystem II, the oxygen-evolving complex of photosynthetic organisms, includes an intriguingly large number of low molecular weight polypeptides, including PsbM. Here we describe the first knock-out of psbM using a transplastomic, reverse genetics approach in a higher plant. Homoplastomic Delta psbM plants exhibit photoautotrophic growth. Biochemical, biophysical, and immunological analyses demonstrate that PsbM is not required for biogenesis of higher order photosystem II complexes. However, photosystem II is highly light-sensitive, and its activity is significantly decreased in Delta psbM, whereas kinetics of plastid protein synthesis, reassembly of photosystem II, and recovery of its activity are comparable with the wild type. Unlike wild type, phosphorylation of the reaction center proteins D1 and D2 is severely reduced, whereas the redox-controlled phosphorylation of photosystem II light-harvesting complex is reversely regulated in Delta psbM plants because of accumulation of reduced plastoquinone in the dark and a limited photosystem II-mediated electron transport in the light. Charge recombination in Delta psbM measured by thermoluminescence oscillations significantly differs from the 2/6 patterns in the wild type. A simulation program of thermoluminescence oscillations indicates a higher Q(B)/Q(-)(B) ratio in dark-adapted mutant thylakoids relative to the wild type. The interaction of the Q(A)/Q(B) sites estimated by shifts in the maximal thermoluminescence emission temperature of the Q band, induced by binding of different herbicides to the Q(B) site, is changed indicating alteration of the activation energy for back electron flow. We conclude that PsbM is primarily involved in the interaction of the redox components important for the electron flow within, outward, and backward to photosystem II.  相似文献   
93.
94.
This review continues a general presentation of the metabolism of drugs and other xenobiotics started in a recent issue of Chemistry & Biodiversity. This Part 2 presents the numerous oxidoreductases involved, their nomenclature, relevant biochemical properties, catalytic mechanisms, and the very diverse reactions they catalyze. Many medicinally, environmentally, and toxicologically relevant examples are presented and discussed. Cytochromes P450 occupy a majority of the pages of Part 2, but a large number of relevant oxidoreductases are also considered, e.g., flavin-containing monooxygenases, amine oxidases, molybdenum hydroxylases, peroxidases, and the innumerable dehydrogenases/reductases.  相似文献   
95.
A phospholipid flippase activity from the endoplasmic reticulum (ER) of the model organism Saccharomyces cerevisiae has been characterized and functionally reconstituted into proteoliposomes. Analysis of the transbilayer movement of acyl-7-nitrobenz-2-oxa-1,3-diazol-4-yl (acyl-NBD)-labeled phosphatidylcholine in yeast microsomes using a fluorescence stopped-flow back exchange assay revealed a rapid, ATP-independent flip-flop (half-time, <2 min). Proteoliposomes prepared from a Triton X-100 extract of yeast microsomal membranes were also capable of flipping NBD-labeled phospholipid analogues rapidly in an ATP-independent fashion. Flippase activity was sensitive to the protein modification reagents N-ethylmaleimide and diethylpyrocarbonate. Resolution of the Triton X-100 extract by velocity gradient centrifugation resulted in the identification of a approximately 4S protein fraction enriched in flippase activity as well as of other fractions where flippase activity was depleted or undetectable. We estimate that flippase activity is due to a protein(s) representing approximately 2% (wt/wt) of proteins in the Triton X-100 extract. These results indicate that specific proteins are required to facilitate ATP-independent phospholipid flip-flop in the ER and that their identification is feasible. The architecture of the ER protein translocon suggests that it could account for the flippase activity in the ER. We tested this hypothesis using microsomes prepared from a temperature-sensitive yeast mutant in which the major translocon component, Sec61p, was quantitatively depleted. We found that the protein translocon is not required for transbilayer movement of phospholipids across the ER. Our work defines yeast as a promising model system for future attempts to identify the ER phospholipid flippase and to test and purify candidate flippases.  相似文献   
96.
Since its outbreak in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) keeps surprising the medical community by evolving diverse immune escape mutations in a rapid and effective manner. To gain deeper insight into mutation frequency and dynamics, we isolated ten ancestral strains of SARS-CoV-2 and performed consecutive serial incubation in ten replications in a suitable and common cell line and subsequently analysed them using RT-qPCR and whole genome sequencing. Along those lines we hoped to gain fundamental insights into the evolutionary capacity of SARS-CoV-2 in vitro. Our results identified a series of adaptive genetic changes, ranging from unique convergent substitutional mutations and hitherto undescribed insertions. The region coding for spike proved to be a mutational hotspot, evolving a number of mutational changes including the already known substitutions at positions S:484 and S:501. We discussed the evolution of all specific adaptations as well as possible reasons for the seemingly inhomogeneous potential of SARS-CoV-2 in the adaptation to cell culture. The combination of serial passage in vitro with whole genome sequencing uncovers the immense mutational potential of some SARS-CoV-2 strains. The observed genetic changes of SARS-CoV-2 in vitro could not be explained solely by selectively neutral mutations but possibly resulted from the action of directional selection accumulating favourable genetic changes in the evolving variants, along the path of increasing potency of the strain. Competition among a high number of quasi-species in the SARS-CoV-2 in vitro population gene pool may reinforce directional selection and boost the speed of evolutionary change.  相似文献   
97.
98.
99.
100.
Ophthalmic study of collagen CVII hypomorphic mice is uniquely challenging due to the strain’s published survival rate to weaning of 24%. Because chronic ocular fibrosis requires time to develop, optimizing the survival rate is of critical importance. In this study, standard husbandry practices were enhanced by the addition of sterilized diet and drug delivery gels, acidified water, irradiated food pellets, cellulose fiber bedding, minimal handling, removal of siblings within 2-3 wk from birth, and a preferred housing location. Survival rates per breeding cycle, sex, weight, and cause of early euthanasia were recorded and analyzed over 43 mo. Overall, 49% of mice survived to weaning and 76% of weaned mice survived to 20 wk of age. Corneal opacities were seen in 65% of mice by 20 wk, but only 10% of eyes showed the sustained opacification that was indicative of fibrosis. Corneal opacities occurred at the same rate as in humans with epidermolysis bullosa. 66% of the mice showed weight loss at 11 wk. Males required early euthanasia 4 times more often than did females. Euthanasia was required for urinary obstruction due to penile prolapse in 88% of males. With our enhanced care protocol, hypomorphic mice in our colony survived at twice the published rate. With this revised husbandry standard, experiments planned with termination endpoints of 14 wk for males and 17 wk for females are more likely to reach completion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号