首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2576篇
  免费   244篇
  国内免费   5篇
  2825篇
  2024年   1篇
  2023年   25篇
  2022年   37篇
  2021年   57篇
  2020年   26篇
  2019年   57篇
  2018年   60篇
  2017年   63篇
  2016年   106篇
  2015年   183篇
  2014年   193篇
  2013年   200篇
  2012年   266篇
  2011年   240篇
  2010年   154篇
  2009年   127篇
  2008年   176篇
  2007年   172篇
  2006年   148篇
  2005年   129篇
  2004年   94篇
  2003年   94篇
  2002年   92篇
  2001年   17篇
  2000年   12篇
  1999年   14篇
  1998年   26篇
  1997年   5篇
  1996年   5篇
  1995年   8篇
  1994年   9篇
  1993年   2篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有2825条查询结果,搜索用时 15 毫秒
21.
22.
To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Ighatm1(Myc)Janz/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Ighatm1(Myc)Janz/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies.  相似文献   
23.
Studies investigating dynamic susceptibility contrast magnetic resonance imaging-determined relative cerebral blood volume (rCBV) maps as a metric of treatment response assessment have generated conflicting results. We evaluated the potential of various analytical techniques to predict survival of patients with glioma treated with chemoradiation. rCBV maps were acquired in patients with high-grade gliomas at 0, 1, and 3 weeks into chemoradiation therapy. Various analytical techniques were applied to the same cohort of serial rCBV data for early assessment of survival. Three different methodologies were investigated: 1) percentage change of whole tumor statistics (i.e., mean, median, and percentiles), 2) physiological segmentation (low rCBV, medium rCBV, or high rCBV), and 3) a voxel-based approach, parametric response mapping (PRM). All analyses were performed using the same tumor contours, which were determined using contrast-enhanced T1-weighted and fluid attenuated inversion recovery images. The predictive potential of each response metric was assessed at 1-year and overall survival. PRM was the only analytical approach found to generate a response metric significantly predictive of patient 1-year survival. Time of acquisition and contour volume were not found to alter the sensitivity of the PRM approach for predicting overall survival. We have demonstrated the importance of the analytical approach in early response assessment using serial rCBV maps. The PRM analysis shows promise as a unified early and robust imaging biomarker of treatment response in patients diagnosed with high-grade gliomas.  相似文献   
24.
The evaluation of mixing quality is an important factor for improving the geometry of stirred-tank reactors and impellers used in bioprocess engineering applications, such as the enzymatic hydrolysis of plant materials. Homogeneity depends on different factors, including the stirrer type and the reactor type (e.g., ratio of diameter/height, ratio of impeller tip diameter/reactor diameter) with or without baffles. This study compares two impellers for enzymatic hydrolysis of suspensions of biomass particles on a milliliter scale. Both impellers were derived from industrially relevant geometries, such as blade and grid stirrers, although the geometry of the second stirrer was slightly modified to an asymmetric shape. The stirrers were investigated with different stirrer–reactor configurations. This was done experimentally and with the aid of computational fluid dynamics. The flow field, mixing numbers, power characteristics and initial conversion rates of sugars were considered to compare the two stirrers. The simulated mixing numbers and power characteristics in baffled and unbaffled milliliter-scale reactors were found to be in good agreement with the measured mixing times and power consumption. The mixing numbers required to reach homogeneity were much higher for the symmetric impeller and remained at least twice as high as the mixing numbers required when using the asymmetric impeller. The highest initial sugar releases from milled corn stover suspensions were achieved with the asymmetric impeller shape. Regardless of the differences in the flow fields or mixing times, diverging enzymatic sugar releases could be confirmed for Newtonian media only.  相似文献   
25.
Abiotic stress is a major force of selection that organisms are constantly facing. While the evolutionary effects of various stressors have been broadly studied, it is only more recently that the relevance of interactions between evolution and underlying ecological conditions, that is, eco-evolutionary feedbacks, have been highlighted. Here, we experimentally investigated how populations adapt to pH-stress under high population densities. Using the protist species Tetrahymena thermophila, we studied how four different genotypes evolved in response to stressfully low pH conditions and high population densities. We found that genotypes underwent evolutionary changes, some shifting up and others shifting down their intrinsic rates of increase (r0). Overall, evolution at low pH led to the convergence of r0 and intraspecific competitive ability (α) across the four genotypes. Given the strong correlation between r0 and α, we argue that this convergence was a consequence of selection for increased density-dependent fitness at low pH under the experienced high density conditions. Increased density-dependent fitness was either attained through increase in r0, or decrease of α, depending on the genetic background. In conclusion, we show that demography can influence the direction of evolution under abiotic stress.  相似文献   
26.
27.

Background and aims

Plant traits may characterize functional ecosystem properties and help to predict community responses to environmental change. Since most traits used relate to aboveground plant organs we aim to explore the indicative value of root traits.

Methods

We examined the response of root traits (specific root length [SRL], specific root surface area [SRA], root diameter [RD], root tissue mass density [TMD], root N concentration) in six grassland species (3 grasses, 3 herbs) to four management regimes (low vs. high mowing frequency; no fertilization vs. high NPK fertilization). The replicated experiment in temperate grassland with long continuity simulated the increase in grassland management intensity in the past 50 years in Central Europe.

Results

Increasing mowing frequency (one vs. three cuts per year) led to no significant root trait changes. NPK fertilization resulted in considerable trait shifts with all species responding in the same direction (higher SRL, SRA and N concentration, lower TMD) but at different magnitude. Fertilization-driven increases in SRA were mainly caused by lowered tissue density while root diameter reduction was the main driver of SRL increases.

Conclusion

We conclude that root morphological traits may be used as valuable indicators of environmental change and increasing fertilization in grasslands.  相似文献   
28.
Tropomodulin (Tmod) is an actin-capping protein that binds to the two tropomyosins (TM) at the pointed end of the actin filament to prevent further actin polymerization and depolymerization. Therefore, understanding the role of Tmod is very important when studying actin filament dependent processes such as muscle contraction and intracellular transport. The capping ability of Tmod is highly influenced by TM and is 1000-fold greater in the presence of TM. There are four Tmod isoforms (Tmod1–4), three of which, Tmod1, Tmod3, and Tmod4, are expressed in skeletal muscles. The affinity of Tmod1 to skeletal striated TM (stTM) is higher than that of Tmod3 and Tmod4 to stTM. In this study, we tested mutations in the TM-binding sites of Tmod1, using circular dichroism (CD) and prediction analysis (PONDR). The mutations R11K, D12N, and Q144K were chosen because they decreased the affinity of Tmod1 to stTM, making it similar to that of affinity of Tmod3 and Tmod4 to stTM. Significant reduction of inhibition of actin pointed-end polymerization in the presence of stTM was shown for Tmod1 (R11K/D12N/Q144K) as compared with WT Tmod1. When GFP-Tmod1 and mutants were expressed in primary chicken skeletal myocytes, decreased assembly of Tmod1 mutants was revealed. This indicates a direct correlation between TM-binding and the actin-capping abilities of Tmod. Our data confirmed the hypothesis that assembly of Tmod at the pointed-end of the actin filament depends on its TM-binding affinity.  相似文献   
29.
Using PD325901 as a starting point for identifying novel allosteric MEK inhibitors with high cell potency and long-lasting target inhibition in vivo, truncation of its hydroxamic ester headgroup was combined with incorporation of alkyl and aryl ethers at the neighboring ring position. Whereas alkoxy side chains did not yield sufficient levels of cell potency, specifically substituted aryloxy groups allowed for high enzymatic and cellular potencies. Sulfamide 28 was identified as a highly potent MEK inhibitor with nanomolar cell potency against B-RAF (V600E) as well as Ras-mutated cell lines, high metabolic stability and resulting long half-lives. It was efficacious against B-RAF as well as K-Ras driven xenograft models and showed—despite being orally bioavailable and not a P-glycoprotein substrate—much lower brain/plasma exposure ratios than PD325901.  相似文献   
30.
In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei—the causative agent of Human African Trypanosomiasis—by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC–MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号