首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5253篇
  免费   529篇
  国内免费   5篇
  2023年   28篇
  2022年   41篇
  2021年   90篇
  2020年   45篇
  2019年   90篇
  2018年   87篇
  2017年   87篇
  2016年   145篇
  2015年   263篇
  2014年   292篇
  2013年   325篇
  2012年   385篇
  2011年   370篇
  2010年   224篇
  2009年   205篇
  2008年   288篇
  2007年   289篇
  2006年   250篇
  2005年   225篇
  2004年   170篇
  2003年   175篇
  2002年   167篇
  2001年   92篇
  2000年   91篇
  1999年   84篇
  1998年   66篇
  1997年   45篇
  1996年   41篇
  1995年   41篇
  1994年   27篇
  1993年   23篇
  1992年   47篇
  1991年   54篇
  1990年   53篇
  1989年   65篇
  1988年   47篇
  1987年   51篇
  1986年   42篇
  1985年   39篇
  1984年   39篇
  1983年   50篇
  1982年   35篇
  1980年   25篇
  1979年   40篇
  1977年   30篇
  1975年   24篇
  1974年   26篇
  1972年   33篇
  1968年   25篇
  1967年   22篇
排序方式: 共有5787条查询结果,搜索用时 62 毫秒
991.
Two distinct mechanisms target membrane proteins to the axonal surface   总被引:11,自引:0,他引:11  
Sampo B  Kaech S  Kunz S  Banker G 《Neuron》2003,37(4):611-624
We have investigated the trafficking of two endogenous axonal membrane proteins, VAMP2 and NgCAM, in order to elucidate the cellular events that underlie their polarization. We found that VAMP2 is delivered to the surface of both axons and dendrites, but preferentially endocytosed from the dendritic membrane. A mutation in the cytoplasmic domain of VAMP2 that inhibits endocytosis abolished its axonal polarization. In contrast, the targeting of NgCAM depends on sequences in its ectodomain, which mediate its sorting into carriers that preferentially deliver their cargo proteins to the axonal membrane. These observations show that neurons use two distinct mechanisms to polarize proteins to the axonal domain: selective retention in the case of VAMP2, selective delivery in the case of NgCAM.  相似文献   
992.
993.
Chaperonins are key components of the cellular chaperone machinery. These large, cylindrical complexes contain a central cavity that binds to unfolded polypeptides and sequesters them from the cellular environment. Substrate folding then occurs in this central cavity in an ATP-dependent manner. The eukaryotic chaperonin TCP-1 ring complex (TRiC, also called CCT) is indispensable for cell survival because the folding of an essential subset of cytosolic proteins requires TRiC, and this function cannot be substituted by other chaperones. This specificity indicates that TRiC has evolved structural and mechanistic features that distinguish it from other chaperones. Although knowledge of this unique complex is in its infancy, we review recent advances that open the way to understanding the secrets of its folding chamber.  相似文献   
994.
FR900098 represents an improved derivative of the new antimalarial drug fosmidomycin and acts through inhibition of the 1-deoxy-D-xylulose 5-phosphate (DOXP) reductoisomerase, an essential enzyme of the mevalonate independent pathway of isoprenoid biosynthesis. Prodrugs with increased activity after oral administration were obtained by chemical modification of the phosphonate moiety to yield acyloxyalkyl esters. The most successful compound demonstrated 2-fold increased activity in mice infected with the rodent malaria parasite Plasmodium vinckei.  相似文献   
995.
Although an impressive list of allergenic structures has been elucidated during the last decade by classical cloning methods, the size of the repertoire of molecular structures able to elicit allergic reactions is still unknown. Selective enrichment of cDNA libraries displayed on phage surface with serum IgE from allergic individuals combined with robotic-based high-throughput screening technology has proved to be extremely successful for the rapid isolation of allergens. The basic concept of linking the phenotype, expressed as gene product displayed on the phage coat, to its genetic information integrated into the phage genome, creates fusion proteins covalently associated with the infectious particle itself. Therefore, cDNA libraries displayed on phage surface can be screened for the presence of specific clones using the discriminative power of affinity purification. The selection of IgE-binding clones involves the enrichment of phage binding to serum IgE immobilised to a solid phase during consecutive rounds of affinity selection. As a consequence of the physical linkage between genotype and phenotype, sequencing of the DNA of the integrated section of the phage genome can readily elucidate the amino acid sequence of the surface-displayed allergen. In spite of some biological limitations imposed by Escherichia coli as expression host, phage surface display technology has strongly contributed to the rapid isolation of a vast variety of IgE-binding structures.  相似文献   
996.
Beck G  Fainzilber M 《Neuron》2002,33(5):673-675
Trophic survival mechanisms are crucial for the determination of cell numbers in the developing vertebrate nervous system, but important neurotrophic factor families such as the neurotrophins have not yet been found in either Drosophila or C. elegans. Two independent studies on distinct glial populations in Drosophila have now shown that their survival is regulated by EGF family members secreted by adjacent neurons. Fly genetics thus promises new insights on trophic signaling mechanisms and confirms that trophic regulation of cell survival is an evolutionarily ancient mechanism for building the nervous system.  相似文献   
997.
The freshwater phase of the first seaward migration of juvenile Atlantic salmon (Salmo salar) is relatively well understood when compared with our understanding of the marine phase of their migration. In 2021, 1008 wild and 60 ranched Atlantic salmon smolts were tagged with acoustic transmitters in 12 rivers in England, Scotland, Northern Ireland and Ireland. Large marine receiver arrays were deployed in the Irish Sea at two locations: at the transition of the Irish Sea into the North Atlantic between Ireland and Scotland, and between southern Scotland and Northern Ireland, to examine the early phase of the marine migration of Atlantic salmon smolts. After leaving their natal rivers' post-smolt migration through the Irish Sea was rapid with minimum speeds ranging from 14.03 to 38.56 km.day−1 for Atlantic salmon smolts that entered the Irish Sea directly from their natal river, to 9.69–39.94 km.day−1 for Atlantic salmon smolts that entered the Irish Sea directly from their natal estuary. Population minimum migration success through the study area was strongly correlated with the distance of travel, populations further away from the point of entry to the open North Atlantic exhibited lower migration success. Post-smolts from different populations experienced different water temperatures on entering the North Atlantic. This was largely driven by the timing of their migration and may have significant consequences for feeding and ultimately survivorship. The influence of water currents on post-smolt movement was investigated using data from previously constructed numerical hydrodynamic models. Modeled water current data in the northern Irish Sea showed that post-smolts had a strong preference for migrating when the current direction was at around 283° (west-north-west) but did not migrate when exposed to strong currents in other directions. This is the most favorable direction for onward passage from the Irish Sea to the continental shelf edge current, a known accumulation point for migrating post-smolts. These results strongly indicate that post-smolts migrating through the coastal marine environment are: (1) not simply migrating by current following (2) engage in active directional swimming (3) have an intrinsic sense of their migration direction and (4) can use cues other than water current direction to orientate during this part of their migration.  相似文献   
998.
The PML tumor suppressor has been functionally implicated in DNA damage response and cellular senescence. Direct evidence for such a role based on PML knockdown or knockout approaches is still lacking. We have therefore analyzed the irradiation-induced DNA damage response and cellular senescence in human and mouse fibroblasts lacking PML. Our data show that PML nuclear bodies (NBs) nonrandomly associate with persistent DNA damage foci in unperturbed human skin and in high-dose-irradiated cell culture systems. PML bodies do not associate with transient γH2AX foci after low-dose gamma irradiation. Superresolution microscopy reveals that all PML bodies within a nucleus are engaged at Rad51- and RPA-containing repair foci during ongoing DNA repair. The lack of PML (i) does not majorly affect the DNA damage response, (ii) does not alter the efficiency of senescence induction after DNA damage, and (iii) does not affect the proliferative potential of primary mouse embryonic fibroblasts during serial passaging. Thus, while PML NBs specifically accumulate at Rad51/RPA-containing lesions and senescence-derived persistent DNA damage foci, they are not essential for DNA damage-induced and replicative senescence of human and murine fibroblasts.  相似文献   
999.
Amino acid transport is an attractive target for oncologic imaging. Despite a high demand of cancer cells for cationic amino acids, their potential as PET probes remains unexplored. Arginine, in particular, is involved in a number of biosynthetic pathways that significantly influence carcinogenesis and tumor biology. Cationic amino acids are transported by several cationic transport systems including, ATB0,+ (SLC6A14), which is upregulated in certain human cancers including cervical, colorectal and estrogen receptor-positive breast cancer. In this work, we report the synthesis and preliminary biological evaluation of a new cationic analog of the clinically used PET tumor imaging agent O-(2-[18F]fluroethyl)-l-tyrosine ([18F]FET), namely O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine ([18F]FEMAET). Reference compound and precursor were prepared by multi-step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [18F]fluorination in 16–20 % decay-corrected yields with radiochemical purity >99 %. The new tracer showed good stability in vitro and in vivo. Cell uptake assays demonstrated that FEMAET and [18F]FEMAET accumulate in prostate cancer (PC-3) and small cell lung cancer cells (NCI-H69), with an energy-dependent mechanism. Small animal PET imaging with NCI-H69 xenograft-bearing mice revealed good tumor visualization comparable to [18F]FET and low brain uptake, indicating negligible transport across the blood–brain barrier. In conclusion, the non-natural cationic amino acid PET probe [18F]FEMAET accumulates in cancer cells in vitro and in vivo with possible involvement of ATB0,+.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号