首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2962篇
  免费   192篇
  3154篇
  2023年   5篇
  2022年   27篇
  2021年   60篇
  2020年   35篇
  2019年   55篇
  2018年   78篇
  2017年   51篇
  2016年   65篇
  2015年   128篇
  2014年   183篇
  2013年   218篇
  2012年   290篇
  2011年   245篇
  2010年   148篇
  2009年   138篇
  2008年   214篇
  2007年   175篇
  2006年   153篇
  2005年   152篇
  2004年   150篇
  2003年   123篇
  2002年   104篇
  2001年   25篇
  2000年   21篇
  1999年   25篇
  1998年   40篇
  1997年   25篇
  1996年   16篇
  1995年   11篇
  1994年   15篇
  1993年   12篇
  1992年   10篇
  1991年   11篇
  1990年   14篇
  1989年   12篇
  1988年   13篇
  1987年   4篇
  1986年   8篇
  1985年   8篇
  1984年   7篇
  1983年   12篇
  1981年   9篇
  1980年   5篇
  1979年   7篇
  1978年   9篇
  1977年   3篇
  1976年   4篇
  1972年   4篇
  1969年   3篇
  1960年   3篇
排序方式: 共有3154条查询结果,搜索用时 8 毫秒
71.
72.
73.
In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, “Cell Death and Survival, Hematological System Development and Function, Hematopoiesis”, is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.  相似文献   
74.
Listeria monocytogenes, a food-borne bacterial pathogen, enters mammalian cells by inducing its own phagocytosis. The listerial protein internalin (InlA) mediates bacterial adhesion and invasion of epithelial cells in the human intestine through specific interaction with its host cell receptor E-cadherin. We present the crystal structures of the functional domain of InlA alone and in a complex with the extracellular, N-terminal domain of human E-cadherin (hEC1). The leucine rich repeat (LRR) domain of InlA surrounds and specifically recognizes hEC1. Individual interactions were probed by mutagenesis and analytical ultracentrifugation. These include Pro16 of hEC1, a major determinant for human susceptibility to L. monocytogenes infection that is essential for intermolecular recognition. Our studies reveal the structural basis for host tro-pism of this bacterium and the molecular deception L. monocytogenes employs to exploit the E-cadherin system.  相似文献   
75.
Activation of the receptor tyrosine kinase c-kit by the kit-ligand, also known as stem cell factor (SCF), is essential to melanocyte and germ cell development and during the early stages of hematopoiesis. Deregulated expression of c-kit has been reported in malignancies affecting these lineages, i.e., myeloid leukemias, melanomas, and germ cell tumors. In addition, c-kit and SCF are coexpressed in some breast and colorectal cancer (CRC) cells, raising the question of whether c-kit serves an autocrine role in normal or malignant epithelial tissues. In this study, we demonstrate that human colorectal carcinomas, but not normal colorectal mucosa cells, coexpress SCF and c-kit in situ. Expression of c-kit was also observed in mucosa adjacent to colorectal tumor tissue. Consistent with a growth-regulatory role of SCF in CRC cells, exogenous SCF stimulated anchorage-dependent and anchorage-independent growth in four out of five CRC cell lines. Exogenous transforming growth factor (TGF)-β1 added at nanomolar concentrations to HT-29 CRC cells, which express the type I, II, and III TGF-β receptors, downregulated c-kit expression to background levels and inhibited c-kit–dependent proliferation. Similarly, TGF-β1 inhibited SCF-dependent proliferation of three first-passage CRC cell lines. In summary, expression of the potential autocrine SCF/c-kit axis is a tumor-associated phenomenon in colorectal cancer that can be suppressed by TGF-β1 in TGF-β–responsive CRC cells. J. Cell. Physiol. 172:1–11, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
76.
77.
It is now commonly accepted that the intestinal microbiota plays a crucial role in the gut physiology and homeostasis, and that both qualitative and quantitative alterations in the compositions of the gut flora exert profound effects on the host’s intestinal cells. In spite of this, the details of the interaction between commensal bacteria and intestinal cells are still largely unknown and only in few cases the molecular mechanisms have been elucidated. Here we analyze the effects of molecules produced and secreted by Lactobacillus gasseri SF1183 on human intestinal HCT116 cells. L. gasseri is a well known species of lactic acid bacteria, commonly associated to the human intestine and SF1183 is a human strain previously isolated from an ileal biopsy of an healthy volunteer. SF1183 produces and secretes, in a growth phase-dependent way, molecule(s) able to drastically interfere with HCT116 cell proliferation. Although several attempts to purify and identify the bioactive molecule(s) have been so far unsuccessful, a partial characterization has indicated that it is smaller than 3 kDa, thermostable and of proteinaceous nature. L. gasseri molecule(s) stimulate a G1-phase arrest of the cell cycle by up-regulation of p21WAF1 rendering cells protected from intrinsic and extrinsic apoptosis. A L. gasseri-mediated reduction of apoptosis and of cell proliferation could be relevant in protecting epithelial barrier integrity and helping in reconstituting tissutal homeostasis.  相似文献   
78.
Induction of multispecific, functional CD4+ and CD8+ T cells is the immunological hallmark of acute self-limiting hepatitis C virus (HCV) infection in humans. In the present study, we showed that gene electrotransfer (GET) of a novel candidate DNA vaccine encoding an optimized version of the nonstructural region of HCV (from NS3 to NS5B) induced substantially more potent, broad, and long-lasting CD4+ and CD8+ cellular immunity than naked DNA injection in mice and in rhesus macaques as measured by a combination of assays, including IFN-gamma ELISPOT, intracellular cytokine staining, and cytotoxic T cell assays. A protocol based on three injections of DNA with GET induced a substantially higher CD4+ T cell response than an adenovirus 6-based viral vector encoding the same Ag. To better evaluate the immunological potency and probability of success of this vaccine, we have immunized two chimpanzees and have compared vaccine-induced cell-mediated immunity to that measured in acute self-limiting infection in humans. GET of the candidate HCV vaccine led to vigorous, multispecific IFN-gamma+CD8+ and CD4+ T lymphocyte responses in chimpanzees, which were comparable to those measured in five individuals that cleared spontaneously HCV infection. These data support the hypothesis that T cell responses elicited by the present strategy could be beneficial in prophylactic vaccine approaches against HCV.  相似文献   
79.
80.
A minor component of chromatin, the phospholipid fraction, changes during cell cycle as result of the activation of intranuclear lipid metabolism enzymes including phosphatidylcholine-dependent phospholipase C activity. It is known that this enzyme may be activated by phosphatidylcholine plasmalogen (Plg). Until now, there has been little evidences for the presence of Plgs inside the nucleus. The aim of our study is to ascertain if they are present in the nucleus and are responsible of the activation of phosphatidylcholine-dependent phospholipase C during cell proliferation and apoptosis. Therefore, we have analysed the Plg composition of the whole homogenate, cytosol, nuclei and chromatin of hepatocytes. The phosphatidylcholine-dependent phospholipase C activity was assayed using both phosphatidylcholine and plasmalogenyl-phosphatidylcholine as substrates. Our results show, for the first time, that Plgs are present in chromatin and the plasmalogenyl-phosphatidylcholine stimulates the phosphatidylcholine-dependent phospholipase C activity more than phosphatidylcholine. Finally, in order to verify the possible role of these molecules during cell proliferation and apoptosis, we used liver of rats fed with ciprofibrate which stimulates hepatocytes proliferation during the treatment and, after withdrawal, apoptosis. After 3 days of ciprofibrate treatment, the chromatin plasmalogenyl-phosphatidylcholine increases as well as the phosphatidylcholine-dependent phospholipase C activity. After drug withdrawal, when the hepatocytes undergo to apoptosis, the plasmalogenyl-phosphatidylcholine content together with phosphatidylcholine-dependent phospholipase C activity decreases. Therefore, it can be concluded that plamalogens are present in the chromatin, and probably may have a function both in regulating phosphatidylcholine dependent phospholipase C and cell cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号