首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2191篇
  免费   133篇
  2324篇
  2024年   3篇
  2023年   3篇
  2022年   21篇
  2021年   40篇
  2020年   23篇
  2019年   39篇
  2018年   64篇
  2017年   37篇
  2016年   46篇
  2015年   94篇
  2014年   141篇
  2013年   177篇
  2012年   225篇
  2011年   175篇
  2010年   112篇
  2009年   114篇
  2008年   166篇
  2007年   124篇
  2006年   115篇
  2005年   125篇
  2004年   106篇
  2003年   99篇
  2002年   77篇
  2001年   15篇
  2000年   12篇
  1999年   20篇
  1998年   32篇
  1997年   20篇
  1996年   12篇
  1995年   10篇
  1994年   13篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   9篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1972年   2篇
排序方式: 共有2324条查询结果,搜索用时 15 毫秒
11.
The DNA polymerase a enzymes from human, and budding (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are homologous proteins involved in initiation and replication of chromosomal DNA. Sequence comparision of human DNA polymerase α with that of S. cerevisiae and S. pombe shows overall levels of amino acid sequence identity of 32% and 34%, respectively. We report here that, despite the sequence conservation among these three enzymes, functionally active human DNA polymerase a fails to rescue several different conditional lethal alleles of the budding yeast POL1 gene at nonpermissive temperature. Furthermore, human DNA polymerase α cannot complement a null allele of budding yeast POL1 either in germinating spores or in vegetatively growing cells. In fission yeast, functionally active human DNA polymerase α is also unable to complement the disrupted polα::ura4 + allele in germinating spores. Thus, in vivo, DNA polymerase α has stringent species specificity for initiation and replication of chromosomal DNA.  相似文献   
12.
This paper investigates the ceramide composition of the psoriatic scale compared with that of normal human SC. A method was optimalized, based on TLC separation followed by densitometry, allowing the provision of good resolution and quantification of ceramide fractions from both normal and pathological specimens. Seven ceramide fractions were isolated and submitted to compositional analysis. The obtained results suggested a revisitation of previous ceramide designation. Therefore a simple classification is suggested, based on grouping ceramides carrying structural similarities under common codes. According to these rules, ceramides were grouped into five classes designated as: (1) Cer[EOS], which contains ester-linked fatty acids, ω-OH fatty acids and sphingosines; (2) Cer[NS], which contains non-OH fatty acids and sphingosines; (3) Cer[NP], which contains non-OH fatty acids and phytosphingosines; (4) Cer[AS], which contains α-OH fatty acids and sphingosines; (5) Cer[AP], which contains α-OH fatty acids and phytosphingosines. Analysis of ceramides from the psoriatic scale, compared to those from normal human SC, resulted in an impairment of the Cer[EOS] content as well as of the ceramides containing phytosphingosine, with concurrent increase in ceramides containing sphingosine, being the total amount maintained identical. Since one of the suggested pathways for phytosphingosine biosynthesis involves the water addition to the corresponding sphingosine double bond, we can speculate that the observed alterarion is due to a deranged water bioavailability, associated with psoriaris.  相似文献   
13.
The biological activities of maitotoxin are strictly dependent on the extracellular calcium concentration and are always associated with an increase of the free cytosolic calcium level. We tested the effects of voltage-sensitive calcium channel blockers (nicardipine and omega-conotoxin) on maitotoxin-induced intracellular calcium increase, membrane depolarization, and inositol phosphate production in PC12 cells. Maitotoxin dose dependently increased the cytosolic calcium level, as measured by the fluorescent probe fura 2. This effect disappeared in a calcium-free medium; it was still observed in the absence of extracellular sodium and was enhanced by the dihydropyridine calcium agonist Bay K 8644. Nicardipine inhibited the effect of maitotoxin on intracellular calcium concentration in a dose-dependent manner. The maitotoxin-induced calcium rise was also reduced by pretreating cells with omega-conotoxin. Pretreatment of cells with maitotoxin did not modify 125I-omega-conotoxin and [3H]PN 200-110 binding to PC12 membranes. Nicardipine and omega-conotoxin inhibition of maitotoxin-evoked calcium increase was reduced by pertussis toxin pretreatment. Maitotoxin caused a substantial membrane depolarization of PC12 cells as assessed by the fluorescent dye bisoxonol. This effect was reduced by pretreating the cells with either nicardipine or omega-conotoxin and was almost completely abolished by the simultaneous pretreatment with both calcium antagonists. Maitotoxin stimulated inositol phosphate production in a dose-dependent manner. This effect was reduced by pretreating the cells with 1 microM nicardipine and was completely abolished in a calcium-free EGTA-containing medium. The findings on maitotoxin-induced cytosolic calcium rise and membrane depolarization suggest that maitotoxin exerts its action primarily through the activation of voltage-sensitive calcium channels, the increase of inositol phosphate production likely being an effect dependent on calcium influx. The ability of nicardipine and omega-conotoxin to inhibit the effect of maitotoxin on both calcium homeostasis and membrane potential suggests that L- and N-type calcium channel activation is responsible for the influx of calcium following exposure to maitotoxin, and not that a depolarization of unknown nature causes the opening of calcium channels.  相似文献   
14.
Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson’s disease, Alzheimer’s disease, Huntington’s chorea, Amyotrophic Lateral Sclerosis and Neurodegeneration with Brain Iron Accumulation). Anyway, the extent of toxicity is dictated, in part, by the localization of the iron complex within the cell (cytosolic, lysosomal and mitochondrial), its biochemical form, i.e., ferritin or hemosiderin, as well as the ability of the cell to prevent the generation and propagation of free radical by the wide range of antioxidants and cytoprotective enzymes in the cell. Particularly, ferrous iron can act as a catalyst in the Fenton reaction that potentiates oxygen toxicity by generating a wide range of free radical species, including hydroxyl radicals (·OH). The observation that patients with neurodegenerative diseases show a dramatic increase in their brain iron content, correlated with the production of reactive oxigen species in these areas of the brain, conceivably suggests that disturbances in brain iron homeostasis may contribute to the pathogenesis of these disorders. The aim of this review is to describe the chemical features of iron in human beings and iron induced toxicity in neurodegenerative diseases. Furthermore, the attention is focused on metal chelating drugs therapeutic strategies.  相似文献   
15.
16.
In a batch cultivation of Pichia pastoris expressing Candida rugosa lipase 1 (CRL1), secretion of 200 microg lipase ml(-1) of culture was achieved in sorbitol-based medium. However, a large amount of recombinant protein was retained intracellularly throughout the fermentation, pointing to the transport step as a major bottleneck. Therefore a translational fusion with the green fluorescent protein (GFP) was constructed that was expressed and transported similarly to the native lipase and retained catalytic activity. This analytical tool enables a rapid monitoring of product localization and amount, based on GFP-associated fluorescence.  相似文献   
17.

Background

HIV-1 matrix protein p17 variants (vp17s) detected in HIV-1-infected patients with non-Hodgkin's lymphoma (HIV-NHL) display, differently from the wild-type protein (refp17), B cell growth-promoting activity. Biophysical analysis revealed that vp17s are destabilized as compared to refp17, motivating us to explore structure-function relationships.

Methods

We used: biophysical techniques (circular dichroism (CD), nuclear magnetic resonance (NMR) and thermal/GuHCL denaturation) to study protein conformation and stability; Surface plasmon resonance (SPR) to study interactions; Western blot to investigate signaling pathways; and Colony Formation and Soft Agar assays to study B cell proliferation and clonogenicity.

Results

By forcing the formation of a disulfide bridge between Cys residues at positions 57 and 87 we obtained a destabilized p17 capable of promoting B cell proliferation. This finding prompted us to dissect refp17 to identify the functional epitope. A synthetic peptide (F1) spanning from amino acid (aa) 2 to 21 was found to activate Akt and promote B cell proliferation and clonogenicity. Three positively charged aa (Arg15, Lys18 and Arg20) proved critical for sustaining the proliferative activity of both F1 and HIV-NHL-derived vp17s. Lack of any interaction of F1 with the known refp17 receptors suggests an alternate one involved in cell proliferation.

Conclusions

The molecular reasons for the proliferative activity of vp17s, compared to refp17, relies on the exposure of a functional epitope capable of activating Akt.

General significance

Our findings pave the way for identifying the receptor(s) responsible for B cell proliferation and offer new opportunities to identify novel treatment strategies in combating HIV-related NHL.  相似文献   
18.
19.
Articular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold. PEMF coils oriented parallel to the articular surface induced superior repair stiffness compared to both perpendicular PEMF (p = .026) and control (p = .012). This was correlated with increased glycosaminoglycan deposition in both parallel and perpendicular PEMF orientations compared to control (p = .010 and .028, respectively). Following in vitro optimization, the potential clinical translation of PEMF was evaluated in a preliminary in vivo preclinical adult canine model. Engineered osteochondral constructs (∅ 6 mm × 6 mm thick, devitalized bone base) were cultured to maturity and implanted into focal defects created in the stifle (knee) joint. To assess expedited early repair, animals were assessed after a 3-month recovery period, with microfracture repairs serving as an additional clinical control. In vivo, PEMF led to a greater likelihood of normal chondrocyte (odds ratio [OR]: 2.5, p = .051) and proteoglycan (OR: 5.0, p = .013) histological scores in engineered constructs. Interestingly, engineered constructs outperformed microfracture in clinical scoring, regardless of PEMF treatment (p < .05). Overall, the studies provided evidence that PEMF stimulation enhanced engineered cartilage growth and repair, demonstrating a potential low-cost, low-risk, noninvasive treatment modality for expediting early cartilage repair.  相似文献   
20.
The high-density lipoprotein apolipoprotein A-I (ApoA-I) stimulates the enzyme lecithin-cholesterol acyltransferase (LCAT) in the reverse cholesterol transport pathway. Two ApoA-I variants, Zaragoza (L144R) and Zavalla (L159P), are associated with low levels of HDL-cholesterol but normal LCAT activity. Haptoglobin interacts with ApoA-I, impairing LCAT stimulation. Synthetic peptides matching the haptoglobin-binding site of native or variant ApoA-I (native, P2a; variants, Zav-pep and Zar-pep) bound haptoglobin with different activity: Zar-pep>P2a>Zav-pep. They also differently rescued LCAT in vitro activity in the presence of haptoglobin (P2a=Zar-pep>Zav-pep). Therefore, both amino acid conversions affect haptoglobin binding and LCAT regulation. We highlight the role of haptoglobin in LCAT regulation in subjects with ApoA-I variants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号