首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2454篇
  免费   150篇
  2604篇
  2024年   3篇
  2023年   4篇
  2022年   25篇
  2021年   45篇
  2020年   26篇
  2019年   46篇
  2018年   68篇
  2017年   41篇
  2016年   51篇
  2015年   105篇
  2014年   149篇
  2013年   200篇
  2012年   238篇
  2011年   189篇
  2010年   125篇
  2009年   120篇
  2008年   177篇
  2007年   138篇
  2006年   125篇
  2005年   138篇
  2004年   112篇
  2003年   107篇
  2002年   89篇
  2001年   28篇
  2000年   18篇
  1999年   25篇
  1998年   32篇
  1997年   23篇
  1996年   15篇
  1995年   12篇
  1994年   16篇
  1993年   11篇
  1992年   6篇
  1991年   13篇
  1990年   11篇
  1989年   7篇
  1988年   10篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   6篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
排序方式: 共有2604条查询结果,搜索用时 15 毫秒
91.
Long-chain acyl-CoA synthetases (LACSs) activate fatty acids for further metabolism and are encoded by a multi-gene family in Arabidopsis. AtLACS6 possesses a type 2 (PTS2) peroxisomal targeting sequence, whilst AtLACS7 has both a type 1 and type 2 peroxisomal targeting sequence. AtLACS7 was used as bait in a yeast two-hybrid screen. Multiple clones of the PTS1 receptor PEX5 were isolated. Quantitative beta-galactosidase assay indicated that full-length PEX5 interacts with AtLACS7 with higher affinity than the TPR domains alone. The interaction between PEX5 and AtLACS7 was confirmed by co-immunoprecipitation and shown to be specific for the PTS1, therefore the AtLACS7 PTS1 is accessible to bind PEX5 in the full-length AtLACS7 protein. The expression profile of AtLACS6, AtLACS7, AtPEX5, and AtPEX7 revealed that AtLACS6 and 7 have distinct patterns of expression and we speculate that the possession of two targeting signals may be advantageous for the import of AtLACS7 when receptors may be limiting.  相似文献   
92.
The centromere is an essential structure in the chromosomes of all eukariotes and is central to the mechanism that ensures proper segregation during mitosis and meiosis. The comparison of DNA sequence motifs, organization and kinetocore components from yeast to man is beginning to indicate that, although centromeres are highly variable DNA elements, a conserved pattern of sequence arrangement and function is emerging. We have identified and characterized the first satellite DNA (P.k.SAT) from microbat species Pipistrellus kuhli. The presence of mammalian CENP-B box and yeast CDEIII box could indicate the participation of P.k.SAT in centromere organization.  相似文献   
93.
Oligodendrocyte precursor cells (OPCs, also called NG2 cells) are scattered throughout brain parenchyma, where they function as a reservoir to replace lost or damaged oligodendrocytes, the myelin-forming cells. The hypothesis that, under some circumstances, OPCs can actually behave as multipotent cells, thus generating astrocytes and neurons as well, has arisen from some in vitro and in vivo evidence, but the molecular pathways controlling this alternative fate of OPCs are not fully understood. Their identification would open new opportunities for neuronal replace strategies, by fostering the intrinsic ability of the brain to regenerate. Here, we show that the anti-epileptic epigenetic modulator valproic acid (VPA) can promote the generation of new neurons from NG2+ OPCs under neurogenic protocols in vitro, through their initial de-differentiation to a stem cell-like phenotype that then evolves to “hybrid” cell population, showing OPC morphology but expressing the neuronal marker βIII-tubulin and the GPR17 receptor, a key determinant in driving OPC transition towards myelinating oligodendrocytes. Under these conditions, the pharmacological blockade of the P2Y-like receptor GPR17 by cangrelor, a drug recently approved for human use, partially mimics the effects mediated by VPA thus accelerating cells’ neurogenic conversion. These data show a co-localization between neuronal markers and GPR17 in vitro, and suggest that, besides its involvement in oligodendrogenesis, GPR17 can drive the fate of neural precursor cells by instructing precursors towards the neuronal lineage. Being a membrane receptor, GPR17 represents an ideal “druggable” target to be exploited for innovative regenerative approaches to acute and chronic brain diseases.  相似文献   
94.
The Murine double-minute clone 2 (Mdm2) onco-protein is the principal regulator of the tumour suppressor, p53. Mdm2 acts as an E3-type ubiquitin ligase that mediates the ubiquitylation and turnover of p53 under normal, unstressed circumstances. In response to cellular stress, such as DNA damage, the Mdm2–p53 interaction is disrupted. Part of the mechanism of uncoupling p53 from Mdm2-mediated degradation involves hypo-phosphorylation of a cluster of phosphorylated serine residues in the central acidic domain of Mdm2. Here, we show that two of the residues within this domain that are phosphorylated in vivo, Ser-260 and Ser-269, are phosphorylated by CK2 in vitro. Treatment of cells with the CK2 inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), leads to the induction of p53 and downstream targets of p53 including Mdm2 itself and p21. These data are consistent with the idea that CK2-mediated phosphorylation of Mdm2 may regulate Mdm2-mediated p53 turnover.  相似文献   
95.
With the aim to select new olive cultivars with superior physical and chemical properties than the cultivar Chemlali Sfax, the present study focused on the comparison of the chemical composition and the sensory profile of the virgin olive oils (VOOs) of two wild olive trees (Oleasters K and M) with those of VOOs obtained from Chemlali Sfax and Neb Jmel olive cultivars, all growing in the coastal region of Tunisia. Despite the variability in the chemical composition (fatty acids, pigments, and phenolic and volatile compounds) and the organoleptic profile of the VOOs of the oleasters and the cultivars, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270) as well as the fatty acid composition of all VOOs studied met the commercial standards. Both the α-tocopherol and phenol contents varied between the genotypes. The Neb Jmel and Oleaster K VOOs had more than two times higher total phenol levels than the Chemlali Sfax and Oleaster M VOOs. Also the contents of volatile compounds differed between the olive oils studied. Chemlali Sfax and Oleaster K oils were more abundant in aldehydes, whereas Oleaster M VOO had higher contents of alcohols. These results were confirmed by a sensorial analysis showing that the later oil was deprived for consumption despite its abundance in α-tocopherol. In conclusion, the oleasters studied revealed to be interesting, since they produced oils with good quality characteristics in terms of minor compounds (phenols and volatiles) compared to the Chemlali Sfax cultivar.  相似文献   
96.
Type 1 non-symbiotic rice hemoglobin (rHb1) shows bis-histidyl heme hexacoordination and is capable of binding diatomic ligands reversibly. The biological function is as yet unclear, but the high oxygen affinity makes it unlikely to be involved in oxygen transport. In order to gain insight into possible physiological roles, we have studied CO rebinding kinetics after laser flash photolysis of rHb1 in solution and encapsulated in silica gel. CO rebinding to wt rHb1 in solution occurs through a fast geminate phase with no sign of rebinding from internal docking sites. Encapsulation in silica gel enhances migration to internal cavities. Site-directed mutagenesis of FB10, a residue known to have a key role in the regulation of hexacoordination and ligand affinity, resulted in substantial effects on the rebinding kinetics, partly inhibiting ligand exit to the solvent, enhancing geminate rebinding and enabling ligand migration within the internal cavities. The mutation of HE7, one of the histidyl residues involved in the hexacoordination, prevents hexacoordination, as expected, but also exposes ligand migration through a complex system of cavities. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   
97.
Summary Pericentric inversion of chromosome 19 has been found in several members of three unrelated families from a restricted geographical region. In one of the families, an additional pericentric inversion of chromosome 9 was observed. Reproductive problems, multiple abortions in two families and a neonatal death in the third, were present. A review of previously described cases is included, and the genetic risk connected with this type of rearrangement is also discussed.  相似文献   
98.
Modifications in the exposure to the solvent of hydrophobic residues, changes in their organization into surface hydrophobic patches, and alterations in the dimerization equilibrium ofβ-lactoglobulin upon thermal treatment at neutralpH were studied. Exposure of tryptophan residues was temperature dependent and was essentially completed on the time scale of seconds. Reorganization of generic hydrophobic protein patches on the protein surface was monitored through binding of 1,8-anilinonaphthalenesulfonate, and was much slower than changes in tryptophan exposure. Different phases in surface hydrophobicity changes were related to the swelling and the subsequent collapse of the protein, which formed a metastable swollen intermediate. Heat treatment ofβ-lactoglobulin also resulted in the formation of soluble oligomeric aggregates. The aggregation process was studied as a function of temperature, demonstrating that (i) dimer dissociation was a necessary step in a sequential polymerization mechanism and (ii) cohesion of hydrophobic patches was the major driving force for aggregation.  相似文献   
99.
100.
Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson’s disease, Alzheimer’s disease, Huntington’s chorea, Amyotrophic Lateral Sclerosis and Neurodegeneration with Brain Iron Accumulation). Anyway, the extent of toxicity is dictated, in part, by the localization of the iron complex within the cell (cytosolic, lysosomal and mitochondrial), its biochemical form, i.e., ferritin or hemosiderin, as well as the ability of the cell to prevent the generation and propagation of free radical by the wide range of antioxidants and cytoprotective enzymes in the cell. Particularly, ferrous iron can act as a catalyst in the Fenton reaction that potentiates oxygen toxicity by generating a wide range of free radical species, including hydroxyl radicals (·OH). The observation that patients with neurodegenerative diseases show a dramatic increase in their brain iron content, correlated with the production of reactive oxigen species in these areas of the brain, conceivably suggests that disturbances in brain iron homeostasis may contribute to the pathogenesis of these disorders. The aim of this review is to describe the chemical features of iron in human beings and iron induced toxicity in neurodegenerative diseases. Furthermore, the attention is focused on metal chelating drugs therapeutic strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号