首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   35篇
  国内免费   1篇
  497篇
  2021年   6篇
  2020年   2篇
  2019年   9篇
  2018年   9篇
  2017年   7篇
  2016年   13篇
  2015年   8篇
  2014年   13篇
  2013年   25篇
  2012年   31篇
  2011年   31篇
  2010年   14篇
  2009年   13篇
  2008年   27篇
  2007年   18篇
  2006年   19篇
  2005年   19篇
  2004年   18篇
  2003年   9篇
  2002年   12篇
  2001年   11篇
  2000年   14篇
  1999年   11篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   12篇
  1991年   12篇
  1990年   10篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1982年   6篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1974年   8篇
  1973年   4篇
  1971年   7篇
  1970年   6篇
  1969年   1篇
  1967年   3篇
排序方式: 共有497条查询结果,搜索用时 0 毫秒
11.
12.
The deposition of fibrillar protein aggregates in human organs is the hallmark of several pathological states, including highly debilitating neurodegenerative disorders and systemic amyloidoses. It is widely accepted that small oligomers arising as intermediates in the aggregation process, released by fibrils, or growing in secondary nucleation steps are the cytotoxic entities in protein-misfolding diseases, notably neurodegenerative conditions. Increasing evidence indicates that cytotoxicity is triggered by the interaction between nanosized protein aggregates and cell membranes, even though little information on the molecular details of such interaction is presently available. In this work, we propose what is, to our knowledge, a new approach, based on the use of single-cell force spectroscopy applied to multifunctional substrates, to study the interaction between protein oligomers, cell membranes, and/or the extracellular matrix. We compared the interaction of single Chinese hamster ovary cells with two types of oligomers (toxic and nontoxic) grown from the N-terminal domain of the Escherichia coli protein HypF. We were able to quantify the affinity between both oligomer type and the cell membrane by measuring the mechanical work needed to detach the cells from the aggregates, and we could discriminate the contributions of the membrane lipid and protein fractions to such affinity. The fundamental role of the ganglioside GM1 in the membrane-oligomers interaction was also highlighted. Finally, we observed that the binding of toxic oligomers to the cell membrane significantly affects the functionality of adhesion molecules such as Arg-Gly-Asp binding integrins, and that this effect requires the presence of the negatively charged sialic acid moiety of GM1.  相似文献   
13.
Articular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold. PEMF coils oriented parallel to the articular surface induced superior repair stiffness compared to both perpendicular PEMF (p = .026) and control (p = .012). This was correlated with increased glycosaminoglycan deposition in both parallel and perpendicular PEMF orientations compared to control (p = .010 and .028, respectively). Following in vitro optimization, the potential clinical translation of PEMF was evaluated in a preliminary in vivo preclinical adult canine model. Engineered osteochondral constructs (∅ 6 mm × 6 mm thick, devitalized bone base) were cultured to maturity and implanted into focal defects created in the stifle (knee) joint. To assess expedited early repair, animals were assessed after a 3-month recovery period, with microfracture repairs serving as an additional clinical control. In vivo, PEMF led to a greater likelihood of normal chondrocyte (odds ratio [OR]: 2.5, p = .051) and proteoglycan (OR: 5.0, p = .013) histological scores in engineered constructs. Interestingly, engineered constructs outperformed microfracture in clinical scoring, regardless of PEMF treatment (p < .05). Overall, the studies provided evidence that PEMF stimulation enhanced engineered cartilage growth and repair, demonstrating a potential low-cost, low-risk, noninvasive treatment modality for expediting early cartilage repair.  相似文献   
14.
The large conductance, voltage- and Ca2+-activated potassium (MaxiK, BK) channel and caveolin-1 play important roles in regulating vascular contractility. Here, we hypothesized that the MaxiK alpha-subunit (Slo1) and caveolin-1 may interact with each other. Slo1 and caveolin-1 physiological association in native vascular tissue is strongly supported by (i) detergent-free purification of caveolin-1-rich domains demonstrating a pool of aortic Slo1 co-migrating with caveolin-1 to light density sucrose fractions, (ii) reverse co-immunoprecipitation, and (iii) double immunolabeling of freshly isolated myocytes revealing caveolin-1 and Slo1 proximity at the plasmalemma. In HEK293T cells, Slo1-caveolin-1 association was unaffected by the smooth muscle MaxiK beta1-subunit. Sequence analysis revealed two potential caveolin-binding motifs along the Slo1 C terminus, one equivalent, 1007YNMLCFGIY1015, and another mirror image, 537YTEYLSSAF545, to the consensus sequence, varphiXXXXvarphiXXvarphi. Deletion of 1007YNMLCFGIY1015 caused approximately 80% loss of Slo1-caveolin-1 association while preserving channel normal folding and overall Slo1 and caveolin-1 intracellular distribution patterns. 537YTEYLSSAF545 deletion had an insignificant dissociative effect. Interestingly, caveolin-1 coexpression reduced Slo1 surface and functional expression near 70% without affecting channel voltage sensitivity, and deletion of 1007YNMLCFGIY1015 motif obliterated channel surface expression. The results suggest 1007YNMLCFGIY1015 possible participation in Slo1 plasmalemmal targeting and demonstrate its role as a main mechanism for caveolin-1 association with Slo1 potentially serving a dual role: (i) maintaining channels in intracellular compartments downsizing their surface expression and/or (ii) serving as anchor of plasma membrane resident channels to caveolin-1-rich membranes. Because the caveolin-1 scaffolding domain is juxtamembrane, it is tempting to suggest that Slo1-caveolin-1 interaction facilitates the tethering of the Slo1 C-terminal end to the membrane.  相似文献   
15.
Specific anti-human erythrocyte acylphosphatase antibodies were raised in rabbits, purified by affinity chromatography, and used to develop an enzyme purification procedure based on an immunoaffinity chromatography step. This procedure permitted the rapid purification of the enzyme, with a high final yield and with a specific activity very similar to that found for the enzyme purified by the standard procedure. The noncompetitive enzyme-linked immunoadsorbent assay developed with the affinity-purified antibodies was very specific and sensitive in that a positive reaction could be detected in the presence of antigen amounts of as little as 0.01 ng/ml. By this assay the enzyme content was determined in normal cells, tissues, and organs as well as in blood samples from hemopathy-affected patients. This test could possibly have clinical applications.  相似文献   
16.
17.
Abstract— The incorporation of radioactive leucine into the total proteins and the proteolipids of normal and denervated rat diaphragm has been studied in vivo. Denervation increased the incorporation of isotopically labelled leucine into each of the isolated proteolipids and the effect was particularly marked in a single proteolipid which has been designated a 'receptor' proteolipid. In normal muscle this particular proteolipid was found to have a higher incorporation of isotopically labelled leucine in the area of the muscle rich in endplates compared with an area devoid of endplates. However the stimulatory effect of denervation on the incorporation of radioactive leucine into this proteolipid was considerably more marked in the latter region. An attempt has been made to correlate these findings with the development of the hypersensitivity to ACh characteristic of denervated muscle.  相似文献   
18.
Mitochondrial and endoplasmic reticulum (ER) networks are fundamental for the maintenance of cellular homeostasis and for determination of cell fate under stress conditions. Recent structural and functional studies revealed the interaction of these networks. These zones of close contact between ER and mitochondria called MAM (mitochondria associated membranes) support communication between the two organelles including bioenergetics and cell survival. The existence of macromolecular complexes in these contact sites has also been revealed. In this contribution, we will review: (i) the ER and mitochondria structure and their dynamics, (ii) the basic principles of ER mitochondrial Ca2+ transport, (iii) the physiological/pathological role of this cross-talk.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号