首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12944篇
  免费   1109篇
  国内免费   6篇
  14059篇
  2023年   72篇
  2022年   143篇
  2021年   277篇
  2020年   151篇
  2019年   181篇
  2018年   269篇
  2017年   236篇
  2016年   408篇
  2015年   630篇
  2014年   805篇
  2013年   880篇
  2012年   1215篇
  2011年   1094篇
  2010年   717篇
  2009年   667篇
  2008年   837篇
  2007年   809篇
  2006年   769篇
  2005年   763篇
  2004年   675篇
  2003年   607篇
  2002年   579篇
  2001年   122篇
  2000年   78篇
  1999年   118篇
  1998年   124篇
  1997年   87篇
  1996年   88篇
  1995年   66篇
  1994年   57篇
  1993年   68篇
  1992年   51篇
  1991年   40篇
  1990年   33篇
  1989年   33篇
  1988年   25篇
  1987年   14篇
  1986年   18篇
  1985年   13篇
  1984年   22篇
  1983年   23篇
  1982年   12篇
  1981年   15篇
  1980年   18篇
  1979年   14篇
  1978年   10篇
  1977年   11篇
  1976年   13篇
  1973年   8篇
  1972年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
We report here a detailed analysis of the proteome adjustments that accompany chromoplast differentiation from chloroplasts during bell pepper (Capsicum annuum) fruit ripening. While the two photosystems are disassembled and their constituents degraded, the cytochrome b6f complex, the ATPase complex, and Calvin cycle enzymes are maintained at high levels up to fully mature chromoplasts. This is also true for ferredoxin (Fd) and Fd-dependent NADP reductase, suggesting that ferredoxin retains a central role in the chromoplasts’ redox metabolism. There is a significant increase in the amount of enzymes of the typical metabolism of heterotrophic plastids, such as the oxidative pentose phosphate pathway (OPPP) and amino acid and fatty acid biosynthesis. Enzymes of chlorophyll catabolism and carotenoid biosynthesis increase in abundance, supporting the pigment reorganization that goes together with chromoplast differentiation. The majority of plastid encoded proteins decline but constituents of the plastid ribosome and AccD increase in abundance. Furthermore, the amount of plastid terminal oxidase (PTOX) remains unchanged despite a significant increase in phytoene desaturase (PDS) levels, suggesting that the electrons from phytoene desaturation are consumed by another oxidase. This may be a particularity of non-climacteric fruits such as bell pepper that lack a respiratory burst at the onset of fruit ripening.  相似文献   
112.
113.
114.
Biomechanics and Modeling in Mechanobiology - Muscle architecture, which includes parameters like fascicle length, pennation angle, and physiological cross-sectional area, strongly influences...  相似文献   
115.
Neuronal cell lines are important model systems to study mechanisms of neurodegenerative diseases. One example is the Lund Human Mesencephalic (LUHMES) cell line, which can differentiate into dopaminergic‐like neurons and is frequently used to study mechanisms of Parkinson's disease and neurotoxicity. Neuronal differentiation of LUHMES cells is commonly verified with selected neuronal markers, but little is known about the proteome‐wide protein abundance changes during differentiation. Using mass spectrometry and label‐free quantification (LFQ), the proteome of differentiated and undifferentiated LUHMES cells and of primary murine midbrain neurons are compared. Neuronal differentiation induced substantial changes of the LUHMES cell proteome, with proliferation‐related proteins being strongly down‐regulated and neuronal and dopaminergic proteins, such as L1CAM and α‐synuclein (SNCA) being up to 1,000‐fold up‐regulated. Several of these proteins, including MAPT and SYN1, may be useful as new markers for experimentally validating neuronal differentiation of LUHMES cells. Primary midbrain neurons are slightly more closely related to differentiated than to undifferentiated LUHMES cells, in particular with respect to the abundance of proteins related to neurodegeneration. In summary, the analysis demonstrates that differentiated LUHMES cells are a suitable model for studies on neurodegeneration and provides a resource of the proteome‐wide changes during neuronal differentiation. (ProteomeXchange identifier PXD020044).  相似文献   
116.

Deforestation, plantation expansion and other human activities in tropical ecosystems are often associated with biological invasions. These processes have been studied for above-ground organisms, but associated changes below the ground have received little attention. We surveyed rainforest and plantation systems in Jambi province, Sumatra, Indonesia, to investigate effects of land-use change on the diversity and abundance of earthworms—a major group of soil-ecosystem engineers that often is associated with human activities. Density and biomass of earthworms increased 4—30-fold in oil palm and rubber monoculture plantations compared to rainforest. Despite much higher abundance, earthworm communities in plantations were less diverse and dominated by the peregrine morphospecies Pontoscolex corethrurus, often recorded as invasive. Considering the high deforestation rate in Indonesia, invasive earthworms are expected to dominate soil communities across the region in the near future, in lieu of native soil biodiversity. Ecologically-friendly management approaches, increasing structural habitat complexity and plant diversity, may foster beneficial effects of invasive earthworms on plant growth while mitigating negative effects on below-ground biodiversity and the functioning of the native soil animal community.

  相似文献   
117.
118.
Bacillus sp B55, a bacterium naturally associated with Nicotiana attenuata roots, promotes growth and survival of wild-type and, particularly, ethylene (ET)–insensitive 35S-ethylene response1 (etr1) N. attenuata plants, which heterologously express the mutant Arabidopsis thaliana receptor ETR1-1. We found that the volatile organic compound (VOC) blend emitted by B55 promotes seedling growth, which is dominated by the S-containing compound dimethyl disulfide (DMDS). DMDS was depleted from the headspace during cocultivation with seedlings in bipartite Petri dishes, and 35S was assimilated from the bacterial VOC bouquet and incorporated into plant proteins. In wild-type and 35S-etr1 seedlings grown under different sulfate (SO4−2) supply conditions, exposure to synthetic DMDS led to genotype-dependent plant growth promotion effects. For the wild type, only S-starved seedlings benefited from DMDS exposure. By contrast, growth of 35S-etr1 seedlings, which we demonstrate to have an unregulated S metabolism, increased at all SO4−2 supply rates. Exposure to B55 VOCs and DMDS rescued many of the growth phenotypes exhibited by ET-insensitive plants, including the lack of root hairs, poor lateral root growth, and low chlorophyll content. DMDS supplementation significantly reduced the expression of S assimilation genes, as well as Met biosynthesis and recycling. We conclude that DMDS by B55 production is a plant growth promotion mechanism that likely enhances the availability of reduced S, which is particularly beneficial for wild-type plants growing in S-deficient soils and for 35S-etr1 plants due to their impaired S uptake/assimilation/metabolism.  相似文献   
119.
Highlights? 9-1-1 and Exo1 are components of the error-free RAD6 pathway ? 9-1-1 promotes postreplicative template switching ? Polyubiquitylated PCNA and 9-1-1 cooperate in the error-free RAD6 pathway ? 9-1-1’s role in the error-free RAD6 pathway is uncoupled from checkpoint functions  相似文献   
120.
Abstract

New route to oligodeoxynucleotides labeled with fluorescent luminarine was explored. Regioselective oxidation of 6-methylthio-purines to 6-methylsulphoxides reactive toward pyridine was achieved. Upon UV irradiation of 6-pyridinium-purines oligonucleotide cleavage instead of phototransformation to luminarine was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号