首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34784篇
  免费   2609篇
  国内免费   980篇
  2024年   39篇
  2023年   316篇
  2022年   759篇
  2021年   1282篇
  2020年   820篇
  2019年   1078篇
  2018年   1153篇
  2017年   911篇
  2016年   1357篇
  2015年   1957篇
  2014年   2298篇
  2013年   2608篇
  2012年   3139篇
  2011年   2890篇
  2010年   1721篇
  2009年   1558篇
  2008年   1836篇
  2007年   1728篇
  2006年   1599篇
  2005年   1476篇
  2004年   1299篇
  2003年   1122篇
  2002年   1046篇
  2001年   428篇
  2000年   396篇
  1999年   395篇
  1998年   298篇
  1997年   247篇
  1996年   269篇
  1995年   228篇
  1994年   192篇
  1993年   168篇
  1992年   199篇
  1991年   189篇
  1990年   156篇
  1989年   129篇
  1988年   122篇
  1987年   115篇
  1986年   87篇
  1985年   102篇
  1984年   71篇
  1983年   75篇
  1982年   38篇
  1981年   40篇
  1980年   41篇
  1979年   48篇
  1978年   38篇
  1977年   31篇
  1976年   27篇
  1975年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
Activity of phosphodiesterases disintegrating cAMP and cGMP in the cornea, sclera and ciliary body was investigated in health and in different stages of experimental herpetic keratitis. The problems concerning the role of the cyclase system in the pathogenesis of herpetic keratitis and the possibility of applying some of the drugs to the disease treatment are discussed.  相似文献   
35.
Summary Mature spinach plants were held in the dark for several days. The photochemical activities and the activity of some enzymes related to NADP reduction were follwed in the chloroplasts isolated from leaves after dark starvation. Photosystem-II, measured by reduction of DPIP, remained stable during 6 days of darkening. The decrease of NADP reduction which appeared after 2 days of starvation was found to be due to protein autolysis rather than inactivation of the photosystems. The stability of photosystem-I was demonstrated by reactivation of NADP reduction after addition of purified ferredoxin and ferredoxin-NADP-reductase. After 4 days of starvation the restoration of the NADP reduction required in addition another, low-molecular-weight factor. From the isolation procedure and from its properties this factor is assumed to be identical with FRS. However, even in the presence of FRS only half of the total activity is restored after 7 days. The activity of the NADP-reducing system is restored in vivo when plants kept for 7 days in the dark are again illuminated.Abbreviations NADP nicotinamide-adenine-dinucleotide phosphate - DPIP 2,6-dichlorophenolindophenol - DCMU (3,4-dichlorophenyl)-1,1-dimethylurea - FRS ferredoxin-reducing-substance  相似文献   
36.
Efficient and highly enantioselective hydrolysis of 2-carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester (CNDE) is the most crucial step in chemoenzymatic synthesis of Pregabalin. By using site-saturation mutagenesis and high-throughput screening techniques, lipase Lip from Thermomyces lanuginosus DSM 10635 was engineered to improve its activity towards CNDE. The triple mutant, S88T/A99N/V116D exhibited a 60-fold improvement in specific activity for CNDE (2.35 U/mg) over the wild-type Lip (0.039 U/mg). Modeling and docking studies demonstrated that the mutant could more effectively stabilize oxygen anions in transition states and the lid of Lip in the open conformation. Additionally, the kinetic resolution of CNDE catalyzed by Escherichia coli cell overexpressing S88T/A99N/V116D mutant afforded (3S)-2-carboxyethyl-3-cyano-5-methylhexanoic acid in 42.4 % conversion and 98 % ee within 20 h with a substrate loading of 1 M (255 g/l). These results demonstrated that a novel and promising biocatalyst was created for efficient chemoenzymatic manufacturing of Pregabalin.  相似文献   
37.
The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses.  相似文献   
38.
Xian-Hui  Dong  Dong-Xue  Ma  Tian-Ci  Zhang  Xiao-Ping  He  Li-Jun  Xu  Ya-Lei  Liu  Hao  Li  Wei-Juan  Gao 《Neurochemical research》2021,46(5):1068-1080
Neurochemical Research - Alzheimer’s disease (AD) process is characterized classically by two hallmark pathologies: β-amyloid (Aβ) plaque deposition and neurofibrillary tangles of...  相似文献   
39.
Tyrosine phosphorylation and dephosphorylation have emerged as fundamentally important mechanisms of signal transduction and regulation in eukaryotic cells, governing many processes, but little has been known about their functions in filamentous fungi. In this study, we deleted two putative protein tyrosine phosphatase (PTP) genes (BcPTPA and BcPTPB) in Botrytis cinerea, encoding the orthologs of Saccharomyces cerevisiae Ptp2 and Ptp3, respectively. Although BcPtpA and BcPtpB have opposite functions in conidiation, they are essential for sclerotial formation in B. cinerea. BcPTPA and BcPTPB deletion mutants ΔBcPtpA-10 and ΔBcPtpB-4 showed significantly increased sensitivity to osmotic and oxidative stresses, and to cell wall damaging agents. Inoculation tests showed that both mutants exhibited dramatically decreased virulence on tomato leaves, apples and grapes. In S. cerevisiae, it has been shown that Ptp2 and Ptp3 negatively regulate the high-osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway. Although both BcPtpA and BcPtpB were able to inactive Hog1 and Mpk1 in S. cerevisiae, in contrast to S. cerevisiae, they positively regulate phosphorylation of BcSak1 (the homologue of Hog1) and BcBmp3 (the homologue of Mpk1) in B. cinerea under stress conditions. These results demonstrated that functions of PTPs in B. cinerea are different from those in S. cerevisiae, and BcPtpA and BcPtpB play important roles in regulation of vegetative development, virulence and in adaptation to oxidative, osmotic and cell-wall damage stresses in B. cinerea.  相似文献   
40.
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号