首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12979篇
  免费   1120篇
  国内免费   6篇
  14105篇
  2023年   72篇
  2022年   143篇
  2021年   276篇
  2020年   147篇
  2019年   182篇
  2018年   272篇
  2017年   237篇
  2016年   405篇
  2015年   628篇
  2014年   810篇
  2013年   877篇
  2012年   1213篇
  2011年   1085篇
  2010年   719篇
  2009年   661篇
  2008年   836篇
  2007年   822篇
  2006年   762篇
  2005年   775篇
  2004年   677篇
  2003年   609篇
  2002年   577篇
  2001年   126篇
  2000年   84篇
  1999年   117篇
  1998年   126篇
  1997年   91篇
  1996年   94篇
  1995年   70篇
  1994年   60篇
  1993年   69篇
  1992年   55篇
  1991年   41篇
  1990年   37篇
  1989年   35篇
  1988年   30篇
  1987年   14篇
  1986年   19篇
  1985年   15篇
  1984年   22篇
  1983年   22篇
  1982年   12篇
  1981年   14篇
  1980年   17篇
  1979年   14篇
  1978年   12篇
  1977年   11篇
  1976年   14篇
  1974年   10篇
  1972年   9篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
941.
Hippea maritima (Miroshnichenko et al. 1999) is the type species of the genus Hippea, which belongs to the family Desulfurellaceae within the class Deltaproteobacteria. The anaerobic, moderately thermophilic marine sulfur-reducer was first isolated from shallow-water hot vents in Matipur Harbor, Papua New Guinea. H. maritima was of interest for genome sequencing because of its isolated phylogenetic location, as a distant next neighbor of the genus Desulfurella. Strain MH(2) (T) is the first type strain from the order Desulfurellales with a completely sequenced genome. The 1,694,430 bp long linear genome with its 1,723 protein-coding and 57 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
942.
Respiratory chain complex I contains 8-9 iron-sulfur clusters. In several cases, the assignment of these clusters to subunits and binding motifs is still ambiguous. To test the proposed ligation of the tetranuclear iron-sulfur cluster N5 of respiratory chain complex I, we replaced the conserved histidine 129 in the 75-kDa subunit from Yarrowia lipolytica with alanine. In the mutant strain, reduced amounts of fully assembled but destabilized complex I could be detected. Deamino-NADH: ubiquinone oxidoreductase activity was abolished completely by the mutation. However, EPR spectroscopic analysis of mutant complex I exhibited an unchanged cluster N5 signal, excluding histidine 129 as a cluster N5 ligand.  相似文献   
943.
Mouse models with physiological and behavioral differences attributable to differential plasticity of hippocampal and amygdalar neuronal networks are rare. We previously generated ataxin-2 (Atxn2) knockout mice and demonstrated that these animals lacked obvious anatomical abnormalities of the CNS, but showed marked obesity and reduced fertility. We now report on behavioral changes as a consequence of Atxn2-deficiency. Atxn2-deficiency was associated with impaired long-term potentiation (LTP) in the amygdala, but normal LTP in the hippocampus. Intact hippocampal plasticity was associated behaviorally with normal Morris Water maze testing. Impaired amygdala plasticity was associated with reduced cued and contextual fear conditioning. Conditioned taste aversion, however, was normal. In addition, knockout mice showed decreased innate fear in several tests and motor hyperactivity in open cage testing. Our results suggest that Atxn2-deficiency results in a specific set of behavioral and cellular disturbances that include motor hyperactivity and abnormal fear-related behaviors, but intact hippocampal function. This animal model may be useful for the study of anxiety disorders and should encourage studies of anxiety in patients with spinocerebellar ataxia type 2 (SCA2).  相似文献   
944.
The mitochondrial matrix enzyme manganese superoxide dismutase (SOD) of Saccharomyces cerevisiae is encoded in the nucleus. It is synthesized as a precursor with an NH2-terminal extension of 26 amino acids which is cleaved off during import into the mitochondrion. Fusions between the NH2-terminal 34 amino acids of SOD and the cytosolic proteins invertase of yeast and mouse dihydrofolate reductase (DHFR) were tested for in vitro binding and import into mitochondria. Efficient translocation over the mitochondrial membranes takes place in the case of the SOD-DHFR fusion. The SOD-invertase fusion protein does not get translocated and binds to the organelle with only low efficiency. Yeast transformants harbouring the SOD-invertase fusion gene accumulate approximately 95% of the hybrid protein in the cytosol. The remaining material is found in the interior of the mitochondrion, loosely attached to the inner membrane. We conclude that the pre-sequence of SOD is able to deliver a passenger protein to the mitochondrion. The efficiency of protein delivery and translocation across the membrane is, however, influenced by the passenger protein.  相似文献   
945.
Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines.  相似文献   
946.
947.
BACKGROUND AND AIMS: In the human stomach expression of TNF-related apoptosis inducing ligand (TRAIL) and its receptors and the modulatory role of Helicobacter pylori are not well described. Therefore, we investigated the effect of H. pylori on the expression of TRAIL, FasL and their receptors (TRAIL-R1-R4, Fas) in gastric epithelial cells and examined their role in apoptosis. MATERIALS AND METHODS: mRNA and protein expression of TRAIL, FasL and their receptors were analyzed in human gastric epithelial cells using RT-PCR, Western blot, and immunohistochemistry. Gastric epithelial cells were incubated with FasL, TRAIL and/or H. pylori, and effects on expression, cell viability and epithelial apoptosis were monitored. Apoptosis was analyzed by histone ELISA, DAPI staining and immunohistochemistry. RESULTS: TRAIL, FasL and their receptor subtypes were expressed in human gastric mucosa, gastric epithelial cell primary cultures and gastric cancer cells. TRAIL, FasL and H. pylori caused a time- and concentration-dependent induction of DNA fragmentation in gastric cancer cells with synergistic effects. In addition, H. pylori caused a selective up-regulation of TRAIL, TRAIL-R1 and Fas mRNA and protein expression in gastric cancer cells. CONCLUSIONS: Next to FasL and Fas, TRAIL and all of its receptor subtypes are expressed in the human stomach and differentially modulated by H. pylori. TRAIL, FasL and H. pylori show complex interaction mediating apoptosis in human gastric epithelial cells. These findings might be important for the understanding of gastric epithelial cell kinetics in patients with H. pylori infection.  相似文献   
948.
The expansion of a polymorphic CAG repeat in the HD gene encoding huntingtin has been identified as the major cause of Huntington’s disease (HD) and determines 42–73% of the variance in the age-at-onset of the disease. Polymorphisms in huntingtin interacting or associated genes are thought to modify the course of the disease. To identify genetic modifiers influencing the age at disease onset, we searched for polymorphic markers in the GRIK2, TBP, BDNF, HIP1 and ZDHHC17 genes and analysed seven of them by association studies in 980 independent European HD patients. Screening for unknown sequence variations we found besides several silent variations three polymorphisms in the ZDHHC17 gene. These and polymorphisms in the GRIK2, TBP and BDNF genes were analysed with respect to their association with the HD age-at-onset. Although some of the factors have been defined as genetic modifier factors in previous studies, none of the genes encoding GRIK2, TBP, BDNF and ZDHHC17 could be identified as a genetic modifier for HD.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
949.
Copy number differences (CNDs), and the concomitant differences in gene number, have contributed significantly to the genomic divergence between humans and other primates. To assess its relative importance, the genomes of human, common chimpanzee, bonobo, gorilla, orangutan and macaque were compared by comparative genomic hybridization using a high-resolution human BAC array (aCGH). In an attempt to avoid potential interference from frequent intra-species polymorphism, pooled DNA samples were used from each species. A total of 322 sites of large-scale inter-species CND were identified. Most CNDs were lineage-specific but frequencies differed considerably between the lineages; the highest CND frequency among hominoids was observed in gorilla. The conserved nature of the orangutan genome has already been noted by karyotypic studies and our findings suggest that this degree of conservation may extend to the sub-microscopic level. Of the 322 CND sites identified, 14 human lineage-specific gains were observed. Most of these human-specific copy number gains span regions previously identified as segmental duplications (SDs) and our study demonstrates that SDs are major sites of CND between the genomes of humans and other primates. Four of the human-specific CNDs detected by aCGH map close to the breakpoints of human-specific karyotypic changes [e.g., the human-specific inversion of chromosome 1 and the polymorphic inversion inv(2)(p11.2q13)], suggesting that human-specific duplications may have predisposed to chromosomal rearrangement. The association of human-specific copy number gains with chromosomal breakpoints emphasizes their potential importance in mediating karyotypic evolution as well as in promoting human genomic diversity. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号