首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431486篇
  免费   44643篇
  国内免费   201篇
  476330篇
  2016年   4867篇
  2015年   6500篇
  2014年   7786篇
  2013年   11386篇
  2012年   12516篇
  2011年   12912篇
  2010年   8770篇
  2009年   8063篇
  2008年   11429篇
  2007年   12076篇
  2006年   11345篇
  2005年   10845篇
  2004年   10845篇
  2003年   10563篇
  2002年   10341篇
  2001年   17452篇
  2000年   17460篇
  1999年   14155篇
  1998年   5095篇
  1997年   5367篇
  1996年   5094篇
  1995年   4790篇
  1994年   4682篇
  1993年   4690篇
  1992年   12312篇
  1991年   12106篇
  1990年   12109篇
  1989年   11884篇
  1988年   11189篇
  1987年   10514篇
  1986年   9835篇
  1985年   10250篇
  1984年   8457篇
  1983年   7296篇
  1982年   5621篇
  1981年   5034篇
  1980年   4711篇
  1979年   8095篇
  1978年   6309篇
  1977年   5951篇
  1976年   5684篇
  1975年   6136篇
  1974年   6702篇
  1973年   6575篇
  1972年   6129篇
  1971年   5536篇
  1970年   4769篇
  1969年   4784篇
  1968年   4455篇
  1967年   3808篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
The non-receptor tyrosine kinase c-Abl is activated in response to DNA damage and induces p73-dependent apoptosis. Here, we investigated c-Abl regulation of the homeodomain-interacting protein kinase 2 (HIPK2), an important regulator of p53-dependent apoptosis. c-Abl phosphorylated HIPK2 at several sites, and phosphorylation by c-Abl protected HIPK2 from degradation mediated by the ubiquitin E3 ligase Siah-1. c-Abl and HIPK2 synergized in activating p53 on apoptotic promoters in a reporter assay, and c-Abl was required for endogenous HIPK2 accumulation and phosphorylation of p53 at Ser46 in response to DNA damage by γ- and UV radiation. Accumulation of HIPK2 in nuclear speckles and association with promyelocytic leukemia protein (PML) in response to DNA damage were also dependent on c-Abl activity. At high cell density, the Hippo pathway inhibits DNA damage-induced c-Abl activation. Under this condition, DNA damage-induced HIPK2 accumulation, phosphorylation of p53 at Ser46, and apoptosis were attenuated. These data demonstrate a new mechanism for the induction of DNA damage-induced apoptosis by c-Abl and illustrate network interactions between serine/threonine and tyrosine kinases that dictate cell fate.  相似文献   
972.
Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression.  相似文献   
973.
Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury.  相似文献   
974.
Hyaluronan (HA) turnover accelerates metastatic progression of prostate cancer in part by increasing rates of tumor cell proliferation and motility. To determine the mechanism, we overexpressed hyaluronidase 1 (Hyal1) as a fluorescent fusion protein and examined its impact on endocytosis and vesicular trafficking. Overexpression of Hyal1 led to increased rates of internalization of HA and the endocytic recycling marker transferrin. Live imaging of Hyal1, sucrose gradient centrifugation, and specific colocalization of Rab GTPases defined the subcellular distribution of Hyal1 as early and late endosomes, lysosomes, and recycling vesicles. Manipulation of vesicular trafficking by chemical inhibitors or with constitutively active and dominant negative Rab expression constructs caused atypical localization of Hyal1. Using the catalytically inactive point mutant Hyal1-E131Q, we found that enzymatic activity of Hyal1 was necessary for normal localization within the cell as Hyal1-E131Q was mainly detected within the endoplasmic reticulum. Expression of a HA-binding point mutant, Hyal1-Y202F, revealed that secretion of Hyal1 and concurrent reuptake from the extracellular space are critical for rapid HA internalization and cell proliferation. Overall, excess Hyal1 secretion accelerates endocytic vesicle trafficking in a substrate-dependent manner, promoting aggressive tumor cell behavior.  相似文献   
975.
Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function.  相似文献   
976.
977.
Meta-analyses of European populations has successfully identified genetic variants in over 150 loci associated with lipid levels, but results from additional ethnicities remain limited. Previously, we reported two novel lipid loci identified in a sample of 7,657 African Americans using a gene-centric array including 50,000 SNPs in 2,100 candidate genes. Initial discovery and follow-up of signals with P < 10−5 in additional African American samples confirmed CD36 and ICAM1. Using an additional 8,244 African American female samples from the Women’s Health Initiative SNP Health Association Resource genome-wide association study dataset, we further examined the previous meta-analyses results by attempting to replicate 20 additional putative lipid signals with P < 10−4. Replication confirmed rs868213, located in a splice donor region of exocyst complex component 3-like 1 (EXOC3L1) as a novel signal for HDL (additive allelic effect β = 0.02; P = 1.4 × 10−8; meta-analyses of discovery and replication). EXOC3L1 is strongly expressed in vascular endothelium and forms part of the exocyst complex, a key facilitator of the trafficking of lipid receptors. Increasing sample sizes for genetic studies in nonEuropean populations will continue to improve our understanding of lipid metabolism.  相似文献   
978.
We previously reported that i) a Western diet increased levels of unsaturated lysophosphatidic acid (LPA) in small intestine and plasma of LDL receptor null (LDLR−/−) mice, and ii) supplementing standard mouse chow with unsaturated (but not saturated) LPA produced dyslipidemia and inflammation. Here we report that supplementing chow with unsaturated (but not saturated) LPA resulted in aortic atherosclerosis, which was ameliorated by adding transgenic 6F tomatoes. Supplementing chow with lysophosphatidylcholine (LysoPC) 18:1 (but not LysoPC 18:0) resulted in dyslipidemia similar to that seen on adding LPA 18:1 to chow. PF8380 (a specific inhibitor of autotaxin) significantly ameliorated the LysoPC 18:1-induced dyslipidemia. Supplementing chow with LysoPC 18:1 dramatically increased the levels of unsaturated LPA species in small intestine, liver, and plasma, and the increase was significantly ameliorated by PF8380 indicating that the conversion of LysoPC 18:1 to LPA 18:1 was autotaxin dependent. Adding LysoPC 18:0 to chow increased levels of LPA 18:0 in small intestine, liver, and plasma but was not altered by PF8380 indicating that conversion of LysoPC 18:0 to LPA 18:0 was autotaxin independent. We conclude that i) intestinally derived unsaturated (but not saturated) LPA can cause atherosclerosis in LDLR−/− mice, and ii) autotaxin mediates the conversion of unsaturated (but not saturated) LysoPC to LPA.  相似文献   
979.
This study employed a non‐lethal measurement tool, which combined an existing photo‐identification technique with a surface, parallel laser photogrammetry technique, to accurately estimate the size of free‐ranging white sharks Carcharodon carcharias. Findings confirmed the hypothesis that surface laser photogrammetry is more accurate than crew‐based estimations that utilized a shark cage of known size as a reference tool. Furthermore, field implementation also revealed that the photographer's angle of reference and the shark's body curvature could greatly influence technique accuracy, exposing two limitations. The findings showed minor inconsistencies with previous studies that examined pre‐caudal to total length ratios of dead specimens. This study suggests that surface laser photogrammetry can successfully increase length estimation accuracy and illustrates the potential utility of this technique for growth and stock assessments on free‐ranging marine organisms, which will lead to an improvement of the adaptive management of the species.  相似文献   
980.
Monthly (April 2009 to May 2010) bottom‐trawl sampling for Brachyplatystoma species along the rapids stretch of the Madeira River in Brazil revealed that Brachyplatystoma rousseauxii larvae and juveniles were present in low abundances in all areas and during all hydrological periods. The presence of larvae and juveniles throughout the hydrological cycle suggests asynchronous spawning in the headwaters of the Madeira River.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号