首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13707篇
  免费   1231篇
  国内免费   6篇
  2023年   76篇
  2022年   147篇
  2021年   288篇
  2020年   148篇
  2019年   188篇
  2018年   270篇
  2017年   240篇
  2016年   414篇
  2015年   647篇
  2014年   824篇
  2013年   894篇
  2012年   1248篇
  2011年   1114篇
  2010年   728篇
  2009年   678篇
  2008年   849篇
  2007年   831篇
  2006年   791篇
  2005年   791篇
  2004年   687篇
  2003年   624篇
  2002年   603篇
  2001年   143篇
  2000年   97篇
  1999年   137篇
  1998年   140篇
  1997年   98篇
  1996年   103篇
  1995年   83篇
  1994年   64篇
  1993年   72篇
  1992年   70篇
  1991年   56篇
  1990年   55篇
  1989年   56篇
  1988年   54篇
  1987年   46篇
  1986年   44篇
  1985年   41篇
  1984年   42篇
  1983年   44篇
  1982年   29篇
  1981年   36篇
  1980年   28篇
  1979年   30篇
  1978年   26篇
  1976年   23篇
  1973年   26篇
  1972年   19篇
  1971年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
A recombinant plasmid containing the mouse c-myc gene was injected into mouse pronuclei. The transgenic line 478 contains about 100 copies of the transgene integrated into one chromosome site. By in situ hybridization, the integration site was localized to chromosome 8B3-C1.  相似文献   
42.
The hair-forming cells (trichocytes) and the mature hair contain four major trichocytic cytokeratins from each of the subfamilies, basic (Hb1-4) and acidic (Ha1-4); these are related - but not identical - to the epithelial cytokeratins. Here we show, by biochemical methods and immunofluorescence microscopy using antibodies specific for either epithelial or trichocyte cytokeratins, that the same set of hair-type cytokeratins, including two newly identified minor components, designated Hax (type I) and Hbx (type II), are also expressed in cells forming nails, in the filiform papillae of the dorsal surface of human and bovine tongue, and, most surprisingly, in some cells of the epithelial reticulum of bovine and human thymus. By double-label immunofluorescence microscopy, we also show that the expression of the two subsets of cytokeratins, i.e., the epithelial and the trichocytic ones, is not necessarily mutually exclusive, but that certain cells of hair follicles, nail matrix and bed, lingual papillae, and the nonlymphoid cell system of the thymus contain both trichocytic and certain epithelial cytokeratins. This indicates that these cells coexpress representatives of both kinds of cytokeratin. Implications of these findings with respect to problems of regulatory control of cytokeratin synthesis in tissue development and differentiation, and the possible functional meaning of the occurrence of trichocytic cytokeratins in such histologically diverse tissues, are discussed.  相似文献   
43.
Summary In vertebrate tissue development a given cell differentiation pathway is usually associated with a pattern of expression of a specific set of cytoskeletal proteins, including different intermediate filament (IF) and junctional proteins, which is identical in diverse species. The retinal pigment epithelium (RPE) is a layer of polar cells that have very similar morphological features and practically identical functions in different vertebrate species. However, in biochemical and immunolocalization studies of the cytoskeletal proteins of these cells we have noted remarkable interspecies differences. While chicken RPE cells contain only IFs of the vimentin type and do not possess desmosomes and desmosomal proteins RPE cells of diverse amphibian (Rana ridibunda, Xenopus laevis) and mammalian (rat, guinea pig, rabbit, cow, human) species express cytokeratins 8 and 18 either as their sole IF proteins, or together with vimentin IFs as in guinea pig and a certain subpopulation of bovine RPE cells. Plakoglobin, a plaque protein common to desmosomes and the zonula adhaerens exists in RPE cells of all species, whereas desmoplakin and desmoglein have been identified only in RPE desmosomes of frogs and cows, including bovine RPE cell cultures in which cytokeratins have disappeared and vimentin IFs are the only IFs present. These challenging findings show that neither cytokeratin IFs nor desmosomes are necessary for the establishment and function of a polar epithelial cell layer and that the same basic cellular architecture can be achieved by different programs of expression of cytoskeletal proteins. The differences in the composition of the RPE cytoskeleton further indicate that, at least in this tissue, a specific program of expression of IF and desmosomal proteins is not related to the functions of the RPE cell, which are very similar in the various species.  相似文献   
44.
The effect of dopamine receptor stimulation on the accumulation of labelled inositol phosphates in rat striatal slices under basal and stimulated conditions was examined following preincubation with [3H]inositol. Incubation of striatal slices with the selective D-1 agonist SKF 38393 or the selective D-2 agonist LY 171555 for 5 or 30 min did not affect the basal accumulation of labelled inositol mono-, bis-, tris-, and tetrakisphosphate. Resolution by HPLC of inositol trisphosphate into inositol-1,3,4-tris-phosphate and inositol-1,4,5-trisphosphate isomers revealed that under basal conditions dopamine did not influence the accumulation of inositol-1,4,5-trisphosphate. Depolarisation evoked by KCl, or addition of the muscarinic receptor agonist carbachol, produced a marked increase in the accumulation of labelled inositol phosphates in both the presence and absence of lithium. Addition of dopamine did not reduce the ability of KCl or carbachol to increase inositol phospholipid hydrolysis. In the presence of lithium, dopamine (100 microM) enhanced KCl-stimulated inositol phospholipid hydrolysis, but this effect appears to be mediated by alpha 1 adrenoceptors because it was blocked by prazosin. SKF 38393 (10 microM) or LY 171555 (10 microM) also did not affect carbachol-stimulated inositol phospholipid hydrolysis. These data, in contrast to recent reports, suggest that striatal dopamine receptors do not appear to be linked to inositol phospholipid hydrolysis.  相似文献   
45.
Summary LiCl, a well-known vegetalising agent, interferes with the commitment of stem cells to nerve cells and nematocytes in Hydra attenuata. Treatment with 20 mM LiCl inhibits commitment to nerve cells, treatment with 1 mM LiCl inhibits commitment to nematocytes. However, LiCl does not prevent stem cells committed to the nematocyte pathway from dividing and differentiating into nests of nematocytes. Following LiCl treatment, determination to nerve cells and nematocytes is triggered again. Commitment to nerve cells is strongly stimulated within the first 3 h following pulse treatment with LiCl if the animals have been fed immediately prior to treatment. In Hydra exposed to LiCl for 10 days the stem cell density is reduced by at least 90% of the initial value, and nematocytes are almost completely missing, whereas the density of nerve cells is within the normal range in animals with normal morphology. Animals which developed a transverse constriction in the middle of the body axis contain a 1.7-fold higher nerve cell density in the lower part than is observed in control animals.  相似文献   
46.
The effect of NAD(P) and analogs of this nucleotide on nitrogenase activity in Rhodospirillum rubrum has been studied. Addition of NAD+ to nitrogen fixing Rsp. rubrum leads to inhibition of nitrogenase. NADP+ has the same effect but NADH or analogs modified in the nicotinamide portion do not cause inhibition. In contrast to ammonium ions, addition of NAD+ leads to inhibition of nitrogenase in cells that have been N-starved under argon. The inhibitory effect of NAD+ is more pronounced at lower light intensities. Addition of NAD+ also leads to inhibition of glutamine synthetase, a phenomenon also occurring when “switchoff” is produced by the addition of effectors such as ammonium ions or glutamine. It is also shown that NAD+ is taken up by Rsp. rubrum cells.  相似文献   
47.
We propose a nomenclature for the genes encoding the chlorophylla/b-binding proteins of the light-harvesting complexes of photosystem I and II. The genes encoding LHC I and LHC II polypeptides are namedLhca1 throughLhca4 andLhcb1 throughLhcb6, respectively. The proposal follows the general format recommended by the Commision on Plant Gene Nomenclature. We also present a table for the conversion of old gene names to the new nomenclature.  相似文献   
48.
The determination of the enantiomeric impurity, i.e., the percentage of (+) N?0437 (= N?0924) in several batches of (??) N-0437 (= N-0923) by chiral HPLC is described. Enantiomeric impurities were calculated based on the peak areas of the two baseline separated enantiomers in the chromatogram. The enantiomeric impurities found in different batches ranged from 0.02% to 0.11%. Calibration curves of the two isomers of N-0437 (Fig. 1,) were made twice to study the reproducibility and linearity of the method. The absorbance ratio, N-0923/N-0924, was found to be 1.02 with a relative standard deviation (RSD) of 9% over the whole concentration range used for the calibration curves.  相似文献   
49.
50.
Rhizome dynamics and resource storage in Phragmites australis   总被引:6,自引:1,他引:5  
Seasonal changes in rhizome concentrations of total nonstructural carbohydrates (TNC), water soluble carbohydrates (WSC), and mineral nutrients (N, P and K) were monitored in two Phragmites australis stands in southern Sweden. Rhizome biomass, rhizome length per unit ground area, and specific weight (weight/ length ratio) of the rhizomes were monitored in one of the stands.Rhizome biomass decreased during spring, increased during summer and decreased during winter. However, changes in spring and summer were small (< 500 g DW m-2) compared to the mean rhizome biomass (approximately 3000 g DW m–2). Winter losses were larger, approximately 1000 g DW m-2, and to a substantial extent involved structural biomass, indicating rhizome mortality. Seasonal changes in rhizome length per unit ground area revealed a rhizome mortality of about 30% during the winter period, and also indicated that an intensive period of formation of new rhizomes occurred in June.Rhizome concentrations of TNC and WSC decreased during the spring, when carbohydrates were translocated to support shoot growth. However, rhizome standing stock of TNC remained large (> 1000 g m–2). Concentrations and standing stocks of mineral nutrients decreased during spring/ early summer and increased during summer/ fall. Only N, however, showed a pattern consistent with a spring depletion caused by translocation to shoots. This pattern indicates sufficient root uptake of P and K to support spring growth, and supports other evidence that N is generally the limiting mineral nutrient for Phragmites.The biomass data, as well as increased rhizome specific weight and TNC concentrations, clearly suggests that reloading of rhizomes with energy reserves starts in June, not towards the end of the growing season as has been suggested previously. This resource allocation strategy of Phragmites has consequences for vegetation management.Our data indicate that carbohydrate reserves are much larger than needed to support spring growth. We propose that large stores are needed to ensure establishment of spring shoots when deep water or stochastic environmental events, such as high rhizome mortality in winter or loss of spring shoots due to late season frost, increase the demand for reserves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号