全文获取类型
收费全文 | 13146篇 |
免费 | 817篇 |
国内免费 | 6篇 |
专业分类
13969篇 |
出版年
2024年 | 29篇 |
2023年 | 74篇 |
2022年 | 146篇 |
2021年 | 280篇 |
2020年 | 157篇 |
2019年 | 180篇 |
2018年 | 267篇 |
2017年 | 233篇 |
2016年 | 406篇 |
2015年 | 625篇 |
2014年 | 798篇 |
2013年 | 867篇 |
2012年 | 1203篇 |
2011年 | 1086篇 |
2010年 | 708篇 |
2009年 | 653篇 |
2008年 | 829篇 |
2007年 | 808篇 |
2006年 | 759篇 |
2005年 | 759篇 |
2004年 | 669篇 |
2003年 | 598篇 |
2002年 | 578篇 |
2001年 | 123篇 |
2000年 | 79篇 |
1999年 | 119篇 |
1998年 | 124篇 |
1997年 | 87篇 |
1996年 | 89篇 |
1995年 | 66篇 |
1994年 | 57篇 |
1993年 | 66篇 |
1992年 | 51篇 |
1991年 | 41篇 |
1990年 | 36篇 |
1989年 | 34篇 |
1988年 | 26篇 |
1987年 | 15篇 |
1986年 | 17篇 |
1985年 | 13篇 |
1984年 | 22篇 |
1983年 | 22篇 |
1982年 | 12篇 |
1981年 | 14篇 |
1980年 | 18篇 |
1979年 | 14篇 |
1978年 | 10篇 |
1977年 | 11篇 |
1976年 | 12篇 |
1972年 | 7篇 |
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Xi-Ping Dong John A. Cunningham Stefan Bengtson Ceri-Wyn Thomas Jianbo Liu Marco Stampanoni Philip C. J. Donoghue 《Proceedings. Biological sciences / The Royal Society》2013,280(1757)
The Early Cambrian organism Olivooides is known from both embryonic and post-embryonic stages and, consequently, it has the potential to yield vital insights into developmental evolution at the time that animal body plans were established. However, this potential can only be realized if the phylogenetic relationships of Olivooides can be constrained. The affinities of Olivooides have proved controversial because of the lack of knowledge of the internal anatomy and the limited range of developmental stages known. Here, we describe rare embryonic specimens in which internal anatomical features are preserved. We also present a fuller sequence of fossilized developmental stages of Olivooides, including associated specimens that we interpret as budding ephyrae (juvenile medusae), all of which display a clear pentaradial symmetry. Within the framework of a cnidarian interpretation, the new data serve to pinpoint the phylogenetic position of Olivooides to the scyphozoan stem group. Hypotheses about scalidophoran or echinoderm affinities of Olivooides can be rejected. 相似文献
12.
Using a large pan-European dataset, we compared least disturbed sites to sites impacted by human pressures across broad river types to assess which aspects of bio-ecological traits of the fish assemblage are most sensitive to alterations of the river ecosystem. To control for variation across river types and large-scale environmental gradients, we began by clustering the least disturbed sites (n = 716) into four homogenous fish assemblage types (FATs) differing by four fish metrics, i.e., lithophilic, rheophilic, omnivorous, and potamodromous fish. We predicted these FATs (headwater streams, medium gradient rivers, lowland rivers, and Mediterranean streams) using environmental variables, i.e., altitude, river slope, temperature, precipitation, latitude, and longitude for impacted sites in our dataset (n = 2,389). Using tests of sensitivity and intensity, 17 fish metrics showed a clear reaction to human pressures. However, 12 metrics responded exclusively within only one of the four FATs. Hence we observed a divergent reaction of fish metrics to human pressures in, e.g., headwater versus lowland rivers. Type-specific reactions are useful in customizing impact assessment for particular river types. It is of primary importance to understand the comparative sensitivity and efficiency of fish-based indicators of water quality for detecting human-induced degradation of river ecosystems. 相似文献
13.
Reimund P. Rötter Jukka Höhn Mirek Trnka Stefan Fronzek Timothy R. Carter Helena Kahiluoto 《Ecology and evolution》2013,3(12):4197-4214
This paper aims: (i) to identify at national scale areas where crop yield formation is currently most prone to climate‐induced stresses, (ii) to evaluate how the severity of these stresses is likely to develop in time and space, and (iii) to appraise and quantify the performance of two strategies for adapting crop cultivation to a wide range of (uncertain) climate change projections. To this end we made use of extensive climate, crop, and soil data, and of two modelling tools: N‐AgriCLIM and the WOFOST crop simulation model. N‐AgriCLIM was developed for the automatic generation of indicators describing basic agroclimatic conditions and was applied over the whole of Finland. WOFOST was used to simulate detailed crop responses at four representative locations. N‐AgriCLIM calculations have been performed nationally for 3829 grid boxes at a 10 × 10 km resolution and for 32 climate scenarios. Ranges of projected shifts in indicator values for heat, drought and other crop‐relevant stresses across the scenarios vary widely – so do the spatial patterns of change. Overall, under reference climate the most risk‐prone areas for spring cereals are found in south‐west Finland, shifting to south‐east Finland towards the end of this century. Conditions for grass are likely to improve. WOFOST simulation results suggest that CO2 fertilization and adjusted sowing combined can lead to small yield increases of current barley cultivars under most climate scenarios on favourable soils, but not under extreme climate scenarios and poor soils. This information can be valuable for appraising alternative adaptation strategies. It facilitates the identification of regions in which climatic changes might be rapid or otherwise notable for crop production, requiring a more detailed evaluation of adaptation measures. The results also suggest that utilizing the diversity of cultivar responses seems beneficial given the high uncertainty in climate change projections. 相似文献
14.
Sandra Scheele Dan Oertel Johannes Bongaerts Stefan Evers Hendrik Hellmuth Karl-Heinz Maurer Michael Bott Roland Freudl 《Microbial biotechnology》2013,6(2):202-206
Carbohydrate oxidases are biotechnologically interesting enzymes that require a tightly or covalently bound cofactor for activity. Using the industrial workhorse Corynebacterium glutamicum as the expression host, successful secretion of a normally cytosolic FAD cofactor-containing sorbitol–xylitol oxidase from Streptomyces coelicolor was achieved by using the twin-arginine translocation (Tat) protein export machinery for protein translocation across the cytoplasmic membrane. Our results demonstrate for the first time that, also for cofactor-containing proteins, a secretory production strategy is a feasible and promising alternative to conventional intracellular expression strategies.The secretory expression of recombinant proteins can offer significant process advantages over cytosolic production strategies, since secretion into the growth medium greatly facilitates downstream processing and therefore can significantly reduce the costs of producing a desired target protein (Quax, 1997). And, in fact, the enormous secretion capacity of certain Gram-positive bacteria (e.g. various Bacillus species) has been used since many years in industry for the production of mainly host-derived secretory proteins such as proteases and amylases, resulting in amounts of more than 20 g l−1 culture medium (Harwood and Cranenburg, 2008). In contrast, attempts to use Bacillus species for the secretory production of heterologous proteins have often failed or led to disappointing results, a fact that, among other reasons, could in many cases be attributed to the presence of multiple cell wall-associated and secreted proteases that rapidly degraded the heterologous target proteins (Li et al., 2004; Sarvas et al., 2004; Westers et al., 2011). Therefore, an increasing need exists to explore alternative host systems with respect to their ability to express and secrete problematic and/or complex heterologous proteins of biotechnological interest.So far, the Gram-positive bacterium Corynebacterium glutamicum has been used in industry mainly for the production of amino acids and other low-molecular weight compounds (Leuchtenberger et al., 2005; Becker and Wittmann, 2011; Litsanov et al., 2012). However, various recent reports have indicated that C. glutamicum might likewise possess a great potential as an alternative host system for the secretory expression of foreign proteins. Corynebacterium glutamicum belongs to a class of diderm Gram-positive bacteria that, besides the cytoplasmic membrane, possess an additional mycolic acid-containing outer membrane-like structure that acts as an extremely efficient permeability barrier for hydrophilic compounds (Hoffmann et al., 2008; Zuber et al., 2008). Despite this fact, an efficient secretion of various heterologous proteins into the growth medium of this microorganism has been observed (e.g. Billman-Jacobe et al., 1995; Meissner et al., 2007; Kikuchi et al., 2009; Tateno et al., 2009; Tsuchidate et al., 2011).In bacteria, two major export pathways exist for the transport of proteins across the cytoplasmic membrane that fundamentally differ with respect to the folding status of their respective substrate proteins during the actual translocation step. The general secretion (Sec) system transports its substrates in a more or less unfolded state and folding takes places on the trans side of the membrane after the actual transport event (Yuan et al., 2010; du Plessis et al., 2011). In contrast, the alternative twin-arginine translocation (Tat) system translocates its substrates in a fully folded form and therefore provides an attractive alternative for the secretory production of proteins that cannot be produced in a functional form via the Sec route (Brüser, 2007). Carbohydrate oxidases are biotechnologically interesting enzymes (van Hellemond et al., 2006) that are excluded from Sec-dependent secretion since they depend on a tightly or covalently bound cofactor for their activity and, for this reason, require that their folding and cofactor insertion has to take place in the cytosol. Because C. glutamicum has shown to be an excellent host for the Tat-dependent secretion of the cofactor-less model protein GFP (Meissner et al., 2007; Teramoto et al., 2011), we now asked whether it is likewise possible to secrete a cofactor-containing enzyme into the supernatant of C. glutamicum using the same protein export route.As a model protein, we chose the sorbitol–xylitol oxidase (SoXy) from Streptomyces coelicolor, a normally cytosolic enzyme that possesses a covalently bound FAD molecule as cofactor (Heuts et al., 2007; Forneris et al., 2008). FAD is incorporated into the apoprotein in a post-translational and self-catalytic process that only occurs if the polypeptide chain has adopted a correctly folded structure (Heuts et al., 2007; 2009). To direct SoXy into the Tat export pathway of C. glutamicum, we constructed a gene encoding a TorA–SoXy hybrid precursor in which SoXy is fused to the strictly Tat-specific signal peptide of the periplasmic Escherichia coli Tat substrate trimethylamine N-oxide reductase (TorA) (Fig. 1) which, in our previous study, has been proven to be a functional and strictly Tat-specific signal peptide also in C. glutamicum (Meissner et al., 2007). The corresponding torA–soxy gene was cloned into the expression vector pEKEx2 (Eikmanns et al., 1991) under the control of an IPTG-inducible Ptac promotor. After transformation of the resulting plasmid pTorA–SoXy into the C. glutamicum ATCC13032 wild-type strain, two independent colonies of the resulting recombinant C. glutamicum (pTorA–SoXy) strain and, as a control, a colony of a strain that contained the empty expression vector without insert [C. glutamicum (pEKEx2)] were grown in CGXII medium (Keilhauer et al., 1993) at 30°C for 16 h in the presence of 1 mM IPTG. Subsequently, the proteins present in the culture supernatants were analysed by SDS-PAGE followed by staining with Coomassie blue. As shown in Fig. 2, in the supernatants of the pTorA–SoXy-containing cells (lanes 3 and 4), a prominent protein band of approximately 44 kDa can be detected, the size of which is very similar to the calculated molecular mass (44.4 kDa) of SoXy. Since this band is completely lacking in the supernatant of the control strain (lane 2), this strongly suggests that this band corresponds to SoXy that has been secreted into the culture supernatant of C. glutamicum (pTorA–SoXy). And, in fact, this suggestion was subsequently confirmed in a direct way by MALDI-TOF mass spectrometry after extraction of the protein out of the gel followed by tryptic digestion (Schaffer et al., 2001) (data not shown).Open in a separate windowFigure 1The TorA–SoXy hybrid precursor protein. Upper part: Schematic drawing of the relevant part of the pTorA–SoXy expression vector. Ptac, IPTG-inducible tac promotor. RBS, ribosome binding site. To maintain the authentic TorA signal peptidase cleavage site, the first four amino acids of the mature TorA protein (black bar) were retained in the TorA–SoXy fusion protein. White bar: TorA signal peptide (TorASP); grey bar: SoXy (amino acids 2–418). Lower part: Amino acid sequence of the signal peptide and early mature region of the TorA–SoXy hybrid precursor. The twin-arginine consensus motif of the TorA signal peptide is underlined. The four amino acids derived from mature TorA are shown in italics. The signal peptidase cleavage site is indicated by an arrowhead.Open in a separate windowFigure 2Secretion of SoXy into the growth medium of C. glutamicum. Cells of C. glutamicum ATCC13032 containing the empty vector pEKEx2 and two independently transformed colonies of C. glutamicum (pTorA–SoXy) were grown overnight in 5 ml of BHI medium (Difco) at 30°C. The cells were washed once with CGXII medium (Keilhauer et al., 1993) and inoculated to an OD600 of 0.5 in 5 ml of fresh CGXII medium containing 1 mM IPTG. After 16 h of further growth at 30°C, the supernatant fractions were prepared as described previously (Meissner et al., 2007). Samples corresponding to an equal number of cells were subjected to SDS-PAGE followed by staining with Coomassie blue. Lane 1, molecular mass marker (kDa). Lane 2, C. glutamicum (pEKEx2); lanes 3 and 4, C. glutamicum (pTorA–SoXy). The position of the secreted SoXy protein is indicated by an arrow.Next, the supernatant of C. glutamicum (pTorA–SoXy) was analysed for SoXy enzyme activity by measuring the production of H2O2 that is formed during the enzymatic conversion of sorbitol to fructose (Meiattini, 1983). Six hours after induction of gene expression by 1 mM IPTG, an enzymatic activity of 10.3 ± 1.6 nmol min−1 ml−1 could be determined in the supernatant of C. glutamicum (pTorA–SoXy). In contrast, no such activity was found in the supernatant of the control strain C. glutamicum (pEKEx2). From these results we conclude that we have succeeded in the secretion of enzymatically active and therefore FAD cofactor-containing SoXy into the culture supernatant of C. glutamicum.Finally, we examined whether the secretion of SoXy had in fact occurred via the Tat pathway of C. glutamicum. Plasmid pTorA–SoXy was used to transform C. glutamcium ATCC13032 wild type and a C. glutamicum ΔTatAC mutant strain that lacks two essential components of the Tat transport machinery and therefore does not possess a functional Tat translocase (Meissner et al., 2007). The corresponding cells were grown in BHI medium (Difco) at 30°C in the presence of 1 mM IPTG for 6 h. Subsequently, the proteins present in the cellular and the supernatant fractions of the corresponding cells were analysed by SDS-PAGE followed by Western blotting using SoXy-specific antibodies. As shown in Fig. 3, polypeptides corresponding to the unprocessed TorA–SoXy precursor and some minor smaller degradation products of it can be detected in the cellular fractions of both the wild-type and the ΔTatAC deletion strains (lanes 3 and 5). In the supernatant fraction of the Tat+ wild-type strain (lane 4), but not that of the ΔTatAC strain (lane 6), a polypeptide corresponding to mature SoXy is present, clearly showing that export of SoXy in the wild-type strain had occurred in a strictly Tat-dependent manner. Another noteworthy finding is the observation that hardly any mature SoXy protein accumulated in the cellular fraction of the Tat+ wild-type strain (lane 3), indicating that SoXy is, after its Tat-dependent translocation across the cytoplasmic membrane and processing by signal peptidase, rapidly transported out of the intermembrane space across the mycolic acid-containing outer membrane into the supernatant. However, the mechanism of how proteins cross this additional permeability barrier is completely unknown so far (Bitter et al., 2009).Open in a separate windowFigure 3Transport of TorA–SoXy occurs in a strictly Tat-dependent manner. Plasmid pTorA–SoXy was transformed into C. glutamcium ATCC13032 (Tat+) and a C. glutamicum ΔTatAC mutant that lacks a functional Tat translocase (Meissner et al., 2007). As a control, the empty pEKEx2 expression vector was transformed into C. glutamicum ATCC13032 (Tat+). The respective strains were grown overnight in 5 ml of BHI medium (Difco) at 30°C. The cells were washed once with BHI and resuspended in 20 ml of fresh BHI medium containing 1 mM IPTG. After 6 h of further growth at 30°C, the cellular (C) and supernatant (S) fractions were prepared as described previously (Meissner et al., 2007). Samples of the C and S fractions were subjected to SDS-PAGE followed by immunoblotting using anti-SoXy antibodies as indicated at the top of the figure. Lanes 1 and 2: C. glutamicum ATCC13032 (pEKEx2); lanes 3 and 4: C. glutamicum ATCC13032 (pTorA–SoXy); lanes 5 and 6: C. glutamicum ΔTatAC (pTorA–SoXy). Asterisk: TorA–SoXy precursor; arrow: secreted SoXy protein. The positions of molecular mass markers (kDa) are indicated at the left margin of the figure.To the best of our knowledge, our results represent the first documented example of the successful secretion of a normally cytosolic, cofactor-containing protein via the Tat pathway in an active form into the culture supernatant of a recombinant expression host. Our results clearly show that, also for this biotechnologically very interesting class of proteins, a secretory production strategy can be a promising alternative to conventional intracellular expression strategies. Besides for SoXy and other FAD-containing carbohydrate oxidases, for which various applications are perceived by industry such as the in situ generation of hydrogen peroxide for bleaching and disinfection performance in technical applications, their use in the food and drink industry, as well as their use in diagnostic applications and carbohydrate biosynthesis processes (Oda and Hiraga, 1998; Murooka and Yamashita, 2001; van Hellemond et al., 2006; Heuts et al., 2007), a secretory production strategy might now be an attractive option also for biotechnologically relevant enzymes that are used as biocatalysts in chemo-enzymatic syntheses and that possess cofactors other than FAD, such as pyridoxal-5′-phosphate (PLP)-dependent ω-transaminases (Mathew and Yun, 2012) or various thiamin diphosphate (TDP)-dependent enzymes (Müller et al., 2009). 相似文献
15.
P-glycoprotein is capable of effluxing a broad range of cytosolic and membrane penetrating xenobiotic substrates, thus leading to multi-drug resistance and posing a threat for the therapeutic treatment of several diseases, including cancer and central nervous disorders. Herein, a virtual screening campaign followed by experimental validation in Caco-2, MDKCII, and MDKCII mdr1 transfected cell lines has been conducted for the identification of novel phospholipids with P-gp transportation inhibitory activity. Phosphatidylinositol-(1,2-dioctanoyl)-sodium salt (8∶0 PI) was found to significantly inhibit transmembrane P-gp transportation in vitro in a reproducible-, cell line-, and substrate-independent manner. Further tests are needed to determine whether this and other phosphatidylinositols could be co-administered with oral drugs to successfully increase their bioavailability. Moreover, as phosphatidylinositols and phosphoinositides are present in the human diet and are known to play an important role in signal transduction and cell motility, our finding could be of substantial interest for nutrition science as well. 相似文献
16.
Yu Ting Wu Tesfaye Wubet Stefan Trogisch Sabine Both Thomas Scholten Helge Bruelheide Fran?ois Buscot 《PloS one》2013,8(6)
Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10–40 yrs; Medium: 40–80 yrs; Old: ≥80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition. 相似文献
17.
Hansi Weissensteiner Margot Haun Sebastian Sch?nherr Mathias Neuner Lukas Forer Günther Specht Anita Kloss-Brandst?tter Florian Kronenberg Stefan Coassin 《PloS one》2013,8(3)
Single nucleotide polymorphisms (SNPs) play a prominent role in modern genetics. Current genotyping technologies such as Sequenom iPLEX, ABI TaqMan and KBioscience KASPar made the genotyping of huge SNP sets in large populations straightforward and allow the generation of hundreds of thousands of genotypes even in medium sized labs. While data generation is straightforward, the subsequent data conversion, storage and quality control steps are time-consuming, error-prone and require extensive bioinformatic support. In order to ease this tedious process, we developed SNPflow. SNPflow is a lightweight, intuitive and easily deployable application, which processes genotype data from Sequenom MassARRAY (iPLEX) and ABI 7900HT (TaqMan, KASPar) systems and is extendible to other genotyping methods as well. SNPflow automatically converts the raw output files to ready-to-use genotype lists, calculates all standard quality control values such as call rate, expected and real amount of replicates, minor allele frequency, absolute number of discordant replicates, discordance rate and the p-value of the HWE test, checks the plausibility of the observed genotype frequencies by comparing them to HapMap/1000-Genomes, provides a module for the processing of SNPs, which allow sex determination for DNA quality control purposes and, finally, stores all data in a relational database. SNPflow runs on all common operating systems and comes as both stand-alone version and multi-user version for laboratory-wide use. The software, a user manual, screenshots and a screencast illustrating the main features are available at http://genepi-snpflow.i-med.ac.at. 相似文献
18.
TRPML3 and TRPV5 are members of the mucolipin (TRPML) and TRPV subfamilies of transient receptor potential (TRP) cation channels. Based on sequence similarities of the pore forming regions and on structure-function evidence, we hypothesized that the pore forming domains of TRPML and TRPV5/TRPV6 channels have similarities that indicate possible functional interactions between these TRP channel subfamilies. Here we show that TRPML3 and TRPV5 associate to form a novel heteromeric ion channel. This novel conductance is detectable under conditions that do not activate either TRPML3 or TRPV5. It has pharmacological similarity with TRPML3 and requires functional TRPML3 as well as functional TRPV5. Single channel analyses revealed that TRPML3 and TRPV5 heteromers have different features than the respective homomers, and furthermore, that they occur in potentially distinct stoichiometric configurations. Based on overlapping expression of TRPML3 and TRPV5 in the kidney and the inner ear, we propose that TRPML3 and TRPV5 heteromers could have a biological function in these organs. 相似文献
19.
Susan Zappala Jonathan R. Helliwell Saoirse R. Tracy Stefan Mairhofer Craig J. Sturrock Tony Pridmore Malcolm Bennett Sacha J. Mooney 《PloS one》2013,8(6)
X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. 相似文献
20.
Thomas Lettner Roland Lang Alfred Klausegger Stefan Hainzl Johann W. Bauer Verena Wally 《PloS one》2013,8(7)
Epidermolysis bullosa refers to a group of genodermatoses that affects the integrity of epithelial layers, phenotypically resulting in severe skin blistering. Dowling-Meara, the major subtype of epidermolysis bullosa simplex, is inherited in an autosomal dominant manner and can be caused by mutations in either the keratin-5 (K5) or the keratin-14 (K14) gene. Currently, no therapeutic approach is known, and the main objective of this study was to identify novel therapeutic targets. We used microarray analysis, semi-quantitative real-time PCR, western blot and ELISA to identify differentially regulated genes in two K14 mutant cell lines carrying the mutations K14 R125P and K14 R125H, respectively. We found kallikrein-related peptidases and matrix metalloproteinases to be upregulated. We also found elevated expression of chemokines, and we observed deregulation of the Cdc42 pathway as well as aberrant expression of cytokeratins and junction proteins. We further demonstrated, that expression of these genes is dependent on interleukin-1 β signaling. To evaluate these data in vivo we analysed the blister fluids of epidermolysis bullosa simplex patients vs. healthy controls and identified matrix metalloproteinase-9 and the chemokine CXCL8/IL-8 as potential therapeutic targets. 相似文献