首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12735篇
  免费   1094篇
  国内免费   6篇
  13835篇
  2023年   72篇
  2022年   143篇
  2021年   275篇
  2020年   147篇
  2019年   178篇
  2018年   266篇
  2017年   233篇
  2016年   401篇
  2015年   624篇
  2014年   796篇
  2013年   864篇
  2012年   1197篇
  2011年   1080篇
  2010年   706篇
  2009年   652篇
  2008年   826篇
  2007年   801篇
  2006年   755篇
  2005年   754篇
  2004年   667篇
  2003年   597篇
  2002年   571篇
  2001年   119篇
  2000年   76篇
  1999年   113篇
  1998年   124篇
  1997年   86篇
  1996年   88篇
  1995年   66篇
  1994年   56篇
  1993年   66篇
  1992年   49篇
  1991年   39篇
  1990年   32篇
  1989年   32篇
  1988年   24篇
  1987年   14篇
  1986年   17篇
  1985年   13篇
  1984年   21篇
  1983年   22篇
  1982年   11篇
  1981年   14篇
  1980年   17篇
  1979年   13篇
  1978年   10篇
  1977年   11篇
  1976年   12篇
  1973年   7篇
  1972年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Lentiviral vectors have been used for gene transfer into the liver but their ability to efficiently transduce quiescent hepatocytes remains controversial. Lentivirus-mediated gene transfer is more efficient in cycling cells. We determine the effect of H-IL6 in the lentiviral transduction. The lentiviral vector was used to transduce HepG2 cells and mice liver cells, previously treated with H-IL6. The highest transduction level was observed in HepG2 cells treated with 30 ng/mL H-IL6 and in the mice that received 4 μg H-IL6. Our results suggest that H-IL6 is an inducer of lentiviral gene transfer into the liver cells without any toxicity.  相似文献   
22.
23.
Molecular basis of bacterial resistance to chloramphenicol and florfenicol   总被引:18,自引:0,他引:18  
Chloramphenicol (Cm) and its fluorinated derivative florfenicol (Ff) represent highly potent inhibitors of bacterial protein biosynthesis. As a consequence of the use of Cm in human and veterinary medicine, bacterial pathogens of various species and genera have developed and/or acquired Cm resistance. Ff is solely used in veterinary medicine and has been introduced into clinical use in the mid-1990s. Of the Cm resistance genes known to date, only a small number also mediates resistance to Ff. In this review, we present an overview of the different mechanisms responsible for resistance to Cm and Ff with particular focus on the two different types of chloramphenicol acetyltransferases (CATs), specific exporters and multidrug transporters. Phylogenetic trees of the different CAT proteins and exporter proteins were constructed on the basis of a multisequence alignment. Moreover, information is provided on the mobile genetic elements carrying Cm or Cm/Ff resistance genes to provide a basis for the understanding of the distribution and the spread of Cm resistance--even in the absence of a selective pressure imposed by the use of Cm or Ff.  相似文献   
24.
Escherichia coli RfaH activates gene expression by tethering the elongating RNA polymerase to the ribosome. This bridging action requires a complete refolding of the RfaH C-terminal domain (CTD) from an α-helical hairpin, which binds to the N-terminal domain (NTD) in the free protein, to a β-barrel, which interacts with the ribosomal protein S10 following RfaH recruitment to its target operons. The CTD forms a β-barrel when expressed alone or proteolytically separated from the NTD, indicating that the α-helical state is trapped by the NTD, perhaps co-translationally. Alternatively, the interdomain contacts may be sufficient to drive the formation of the α-helical form. Here, we use functional and NMR analyses to show that the denatured RfaH refolds into the native state and that RfaH in which the order of the domains is reversed is fully functional in vitro and in vivo. Our results indicate that all information necessary to determine its fold is encoded within RfaH itself, whereas accessory factors or sequential folding of NTD and CTD during translation are dispensable. These findings suggest that universally conserved RfaH homologs may change folds to accommodate diverse interaction partners and that context-dependent protein refolding may be widespread in nature.  相似文献   
25.
26.
27.
Infiltration of human immunodeficiency virus type 1 (HIV-1)-infected and uninfected monocytes/macrophages in organs and tissues is a general phenomenon observed in progression of acquired immunodeficiency syndrome (AIDS). HIV-1 protein Nef is considered as a progression factor in AIDS, and is released from HIV-1-infected cells. Here, we show that extracellular Nef increases migration of monocytes. This effect is (i) concentration-dependent, (ii) reaches the order of magnitude of that induced by formyl-methyonyl-leucyl-proline (fMLP) or CC chemokine ligand 2 (CCL2)/monocyte chemotactic protein (MCP)-1, (iii) inhibited by anti-Nef monoclonal antibodies as well as by heating, and (iv) depends on a concentration gradient of Nef. Further, Nef does not elicit monocytic THP-1 cells to express chemokines such as CCL2, macrophage inhibitory protein-1alpha (CCL3) and macrophage inhibitory protein-1beta (CCL4). These data suggest that extracellular Nef may contribute to disease progression as well as HIV-1 spreading through affecting migration of monocytes.  相似文献   
28.
The contact area of neurotoxin II from Naja naja oxiana when interacting with the membrane-bound nicotinic acetylcholine receptor from Torpedo californica was determined by solid-state, magic-angle spinning NMR spectroscopy. For this purpose, the carbon signals for more than 90% of the residues of the bound neurotoxin were assigned. Differences between the solution and solid-state chemical shifts of the free and bound form of the toxin are confined to distinct surface regions. Loop II of the short toxin was identified as the main interaction site. In addition, loop III of neurotoxin II shows several strong responses defining an additional interaction site. A comparison with the structures of α-cobratoxin bound to the acetylcholine-binding protein from snail species Lymnaea stagnalis and Aplysia californica, and of α-bungarotoxin bound to an extracellular domain of an α-subunit of the receptor reveals different contact areas for long and short α-neurotoxins.  相似文献   
29.

Background

The incidence of acute coronary syndrome (ACS) in young people (≤65 years) is continuously rising. While prognostic factors in ACS are well-investigated less attention has been paid to their age-dependent prognostic value and their particular relevance in younger patients. The aim of our study was to assess the age-dependent prognostic impact of butyrylcholinesterase (BChE).

Methods

Retrospective cohort study including 624 patients with ACS. Patients were stratified by age into equal groups (n = 208) corresponding to “young patients” (45–64 years), "middle-aged patients” (65–84 years) and “old patients” (85–100 years). Cox regression hazard analysis was used to assess the influence of BChE on survival.

Results

After a mean follow-up time of 4.0 (interquartile range [IQR] 2.0–6.4) years, 154 patients (24.7%) died due to a cardiac cause. In the overall cohort, BChE was indirectly associated with cardiac mortality-free survival (adjusted hazard ratio (HR): 0.70 (95% confidence interval [CI] 0.53–0.93, p = 0.01). The primary-analysis of BChE by age strata showed the strongest effect in the age group 45–64 years with an adjusted HR per 1-SD of 0.28 (95% CI 0.12–0.64, p = 0.003), a weaker association with mortality in middle aged (65–84 years: adjusted HR per 1-SD 0.66 [95% CI: 0.41–1.06], p = 0.087), and no association in older patients (85–100 years: adjusted HR per 1-SD 0.89 [95% CI: 0.58–1.38], p = 0.613).

Conclusion

BChE is a strong predictor for cardiac mortality specifically in younger patients with ACS aged between 45 and 64 years. No significant association of BChE with cardiac-mortality was detected in other age classes.  相似文献   
30.
Aggregation of α‐synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age‐dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA‐mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ‐1 but not the PD‐associated mutations PINK1 G309D and parkin Δ1–79 or by DJ‐1 C106A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号