首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   35篇
  2023年   5篇
  2022年   8篇
  2021年   4篇
  2020年   3篇
  2019年   11篇
  2018年   5篇
  2017年   10篇
  2016年   13篇
  2015年   18篇
  2014年   29篇
  2013年   25篇
  2012年   17篇
  2011年   36篇
  2010年   19篇
  2009年   19篇
  2008年   19篇
  2007年   17篇
  2006年   19篇
  2005年   13篇
  2004年   19篇
  2003年   9篇
  2002年   18篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1988年   1篇
  1987年   3篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1965年   1篇
排序方式: 共有388条查询结果,搜索用时 31 毫秒
51.
Murine cells do not support efficient assembly and release of human immunodeficiency virus type 1 (HIV-1) virions. HIV-1-infected mouse cells that express transfected human cyclin T1 synthesize abundant Gag precursor polyprotein, but inefficiently assemble and release virions. This assembly defect may result from a failure of the Gag polyprotein precursor to target to the cell membrane. Plasma membrane targeting of the precursor is mediated by the amino-terminal region of polyprotein. To compensate for the assembly block, we substituted the murine leukemia virus matrix coding sequences into an infectious HIV-1 clone. Transfection of murine fibroblasts expressing cyclin T1 with the chimeric proviruses resulted in viruses that were efficiently assembled and released. Chimeric viruses, in which the cytoplasmic tail of the transmembrane subunit, gp41, was truncated to prevent potential interference between the envelope glycoprotein and the heterologous matrix, could infect human and murine cells. They failed to further replicate in the murine cells, but replicated with delayed kinetics in human MT-4 cells. These findings may be useful for establishing a murine model for HIV-1 replication.  相似文献   
52.
53.
54.
The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision.We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception.  相似文献   
55.
56.
β‐arrestins seem to have a role in endocytosis and desensitization of somatostatin receptor subtype 2 (sst2) and could be associated with the responsiveness to somatostatin receptor ligands (SRL) in patients with acromegaly. To investigate the in vivo correlation between β‐arrestins 1 and 2 with sst2, sst5 and dopamine receptor subtype 2 (D2) expressions, and the association of β‐arrestins with response to first‐generation SRL and invasiveness in somatotropinomas. β‐arrestins 1 and 2, sst2, sst5 and D2 mRNA expressions were evaluated by quantitative real‐time RT‐PCR on tumoral tissue of 96 patients. Moreover, sst2 and sst5 protein expressions were also evaluated in 40 somatotropinomas by immunohistochemistry. Response to SRL, defined as GH <1 μg/l and normal IGF‐I levels, was assessed in 40 patients. The Knosp‐Steiner criteria were used to define invasiveness. Median β‐arrestin 1, β‐arrestin 2, sst2, sst5 and D2 mRNA copy numbers were 478; 9375; 731; 156 ; and 3989, respectively. There was a positive correlation between β‐arrestins 1 and 2 (= 0.444, < 0.001). However, no correlation between β‐arrestins and sst2, sst5 (mRNA and protein levels) or D2 was found. No association was found between β‐arrestins expression and SRL responsiveness or tumour invasiveness. Although previous data suggest a putative correlation between β‐arrestins and sst2, our data clearly indicated that no association existed between β‐arrestins and sst2, sst5 or D2 expression, nor with response to SRL or tumour invasiveness. Therefore, further studies are required to clarify whether β‐arrestins have a role in the response to treatment with SRL in acromegaly.  相似文献   
57.
58.
Using moving boundary electrophoresis in a veronal buffer, pH 8·5, of 0·05 ionic strength and at 4·3 mA, we succeeded in separating the inhibitor, which was obtained by fractionation on a Sephadex G-50 column, into four components. The two most substantial components represent 25% and 65% respectively from the separated proteins as a whole. The heterogeneity of the inhibitor was proved by analytical ultracentrifugation, too. The ionex chromatography was applied for the quantitative separation of the inhibitor. We used ionex chromatography on DEAE Cellulose the concentration gradient being 0–1m NaCl in a 0·01m phosphate buffer, pH 7·3, and on DEAE Sephadex A-50 using the same concentration gradient in a phosphate buffer, of 0·1 ionic strength and pH 7·3. In both cases four components were obtained. The most substantial component, representing 65% of the whole analysed material, was eluted at the concentration 0·15–0·3m NaCl, and was electrophoretically homogenous and showed the most effective inhibitory ability.  相似文献   
59.
Activation of peroxidase catalytic function of cytochrome c (cyt c) by anionic lipids is associated with destabilization of its tertiary structure. We studied effects of several anionic phospholipids on the protein structure by monitoring (1) Trp59 fluorescence, (2) Fe-S(Met80) absorbance at 695 nm, and (3) EPR of heme nitrosylation. Peroxidase activity was probed using several substrates and protein-derived radicals. Peroxidase activation of cyt c did not require complete protein unfolding or breakage of the Fe-S(Met80) bond. The activation energy of cyt c peroxidase changed in parallel with stability energies of structural regions of the protein probed spectroscopically. Cardiolipin (CL) and phosphatidic acid (PA) were most effective in inducing cyt c peroxidase activity. Phosphatidylserine (PS) and phosphatidylinositol bisphosphate (PIP2) displayed a significant but much weaker capacity to destabilize the protein and induce peroxidase activity. Phosphatidylinositol trisphosphate (PIP3) appeared to be a stronger inducer of cyt c structural changes than PIP2, indicating a role for the negatively charged extra phosphate group. Comparison of cyt c-deficient HeLa cells and mouse embryonic cells with those expressing a full complement of cyt c demonstrated the involvement of cyt c peroxidase activity in selective catalysis of peroxidation of CL, PS, and PI, which corresponded to the potency of these lipids in inducing cyt c's structural destabilization.  相似文献   
60.
Summary Serum amyloid A (SAA), an acute-phase protein, exists normally in the serum while complexed with high-density lipoprotein 3 (SAA-HDL3). Its levels increase markedly during inflammatory diseases. The pentapeptide Tyr-Ile-Gly-Ser-Asp (YIGSR-like) and the tripeptide Arg-Gly-Asn (RGD-like), related to the cell adhesion domains of laminin and fibronectin, respectively, exist in SAA within close proximity (YIGSDKYFHARGNY; amino acid residues 29–42). A structure-function study of linear and head-to-tail cyclic peptides, related to the amino acid residues 29–42) and 70–76 (GRGAEDS) of human SAA, was performed in order to evaluate their ability to inhibit adhesion of human T-lymphocytes to surfaces coated with extracellular matrix purified from bovine corneal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号