首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   17篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   10篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   10篇
  2006年   12篇
  2005年   9篇
  2004年   12篇
  2003年   9篇
  2002年   8篇
  2001年   8篇
  2000年   12篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   6篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
  1967年   2篇
  1966年   2篇
  1931年   1篇
  1901年   1篇
排序方式: 共有230条查询结果,搜索用时 531 毫秒
191.
Three sets of novel 4-deoxy-l-arabinose analogs were synthesized and evaluated as potential inhibitors of the bacterial resistance mechanism in which lipid A, on the outer membrane, is modified with 4-amino-4-deoxy-l-arabinose (l-Ara4N). One compound diminished the transfer of l-Ara4N onto lipid A. These results suggest that small molecules might be designed that would effect the same reversal of bacterial resistance observed in genetic knockouts.  相似文献   
192.
A series of 2-phenyl quinoline-4-carboxylic acid derivatives related to brequinar, an inhibitor of human dihydroorotate dehydrogenase (DHODH), has been prepared and evaluated as inhibitors of DHODH from the malaria parasite Plasmodium falciparum. Brequinar was essentially inactive against PfDHODH (IC(50) 880 microM) whereas several members of the series inhibited PfDHODH. Unexpectedly, replacement of the carboxylic acid required for brequinar to inhibit hDHODH was not essential in the diisopropylamides that inhibited PfDHODH.  相似文献   
193.
Biological methylation reactions and homocysteine (Hcy) metabolism are intimately linked. In previous work, we have shown that phosphatidylethanolamine N-methyltransferase, an enzyme that methylates phosphatidylethanolamine to form phosphatidylcholine, plays a significant role in the regulation of plasma Hcy levels through an effect on methylation demand (Noga, A. A., Stead, L. M., Zhao, Y., Brosnan, M. E., Brosnan, J. T., and Vance, D. E. (2003) J. Biol. Chem. 278, 5952-5955). We have further investigated methylation demand and Hcy metabolism in liver-specific CTP:phosphocholine cytidylyltransferase-alpha (CTalpha) knockout mice, since flux through the phosphatidylethanolamine N-methyltransferase pathway is increased 2-fold to meet hepatic demand for phosphatidylcholine. Our data show that plasma Hcy is elevated by 20-40% in mice lacking hepatic CTalpha. CTalpha-deficient hepatocytes secrete 40% more Hcy into the medium than do control hepatocytes. Liver activity of betaine:homocysteine methyltransferase and methionine adenosyltransferase are elevated in the knockout mice as a mechanism for maintaining normal hepatic S-adenosylmethionine and S-adenosylhomocysteine levels. These data suggest that phospholipid methylation in the liver is a major consumer of AdoMet and a significant source of plasma Hcy.  相似文献   
194.
Attachment of positively charged, amine-containing residues such as 4-amino-4-deoxy-l-arabinose (l-Ara4N) and phosphoethanolamine (pEtN) to Escherichia coli and Salmonella typhimurium lipid A is required for resistance to the cationic antimicrobial peptide, polymyxin. In an attempt to discover additional lipid A modifications important for polymyxin resistance, we generated polymyxin-sensitive mutants of an E. coli pmrA(C) strain, WD101. A subset of polymyxin-sensitive mutants produced a lipid A that lacked both the 3'-acyloxyacyl-linked myristate (C(14)) and l-Ara4N, even though the necessary enzymatic machinery required to synthesize l-Ara4N-modified lipid A was present. Inactivation of lpxM in both E. coli and S. typhimurium resulted in the loss of l-Ara4N addition, as well as, increased sensitivity to polymyxin. However, decoration of the lipid A phosphate groups with pEtN residues was not effected in lpxM mutants. In summary, we demonstrate that attachment of l-Ara4N to the phosphate groups of lipid A and the subsequent resistance to polymyxin is dependent upon the presence of the secondary linked myristoyl group.  相似文献   
195.
A fluorogenic probe (fliG-P), designed within a chromosomal DNA sequence, was used in a TaqMan PCR assay to identify Agrobacterium spp. The TaqMan assay detected 58 of 59 Agrobacterium strains tested, but did not detect 13 other Rhizobiaceae strains. Seedlings were grown from seven lots of surface-sterilised Brassica napus seed. Seedlings from these samples were placed in phosphate buffer and the resulting suspensions used to inoculate broth media selective for Agrobacterium biovars 1 and 2. Lysed broths (after 48 h incubation) were used as template in the fliG TaqMan PCR to detect Agrobacterium sp. in one of the seed samples. Individual Agrobacterium strains were isolated from this sample and tested by three Ti-plasmid conventional PCR assays. None of the strains possessed a plasmid. This is the first report of Agrobacterium sp. present within the seed of B. napus, a crop routinely screened for genetically modified DNA contamination using PCR assays with Agrobacterium sequences as targets.  相似文献   
196.
The role of lipoxygenase (lox) in senescence of Alstroemeria peruviana flowers was investigated using a combination of in vitro assays and chemical profiling of the lipid oxidation products generated. Phospholipids and galactolipids were extensively degraded during senescence in both sepals and petals and the ratio of saturated/unsaturated fatty acids increased. Lox protein levels and enzymatic activity declined markedly after flower opening. Stereochemical analysis of lox products showed that 13-lox was the major activity present in both floral tissues and high levels of 13-keto fatty acids were also synthesized. Lipid hydroperoxides accumulated in sepals, but not in petals, and sepals also had a higher chlorophyll to carotenoid ratio that favors photooxidation of lipids. Loss of membrane semipermeability was coincident for both tissue types and was chronologically separated from lox activity that had declined by over 80% at the onset of electrolyte leakage. Thus, loss of membrane function was not related to lox activity or accumulation of lipid hydroperoxides per se and differs in these respects from other ethylene-insensitive floral tissues representing a novel pattern of flower senescence.  相似文献   
197.
198.
AIMS: Determination of genetic diversity among UK Burkholderia cepacia isolates from various environmental niches, principally woodland tree rhizospheres and onions. METHODS AND RESULTS: Genus determination was made using polymerase chain reaction (PCR) amplification and fatty acid methyl ester profiling. Genetic diversity was investigated by repetitive sequence genetic PCR fingerprinting. Several onion isolates were similar to clinical isolates but others were diverse. Some environmental isolates were possibly synonymous with B. cepacia and B. gladioli but most from woodland rhizospheres were distinct and clustered together. The 16S rRNA genes of representatives from these clusters were PCR amplified, sequenced and phylogenetically compared with all known Burkholderia and related species. This revealed that the rhizospheric isolates had closest affinity with Burkholderia spp. with known bioremediative and biocontrol capabilities and were unrelated to taxa comprising plant or human pathogenic strains. CONCLUSIONS: All of the analyses investigated revealed that environmental and onion isolates of B. cepacia complex bacteria are genetically diverse but that woodland rhizospheric isolates are related to each other and unrelated to plant or human pathogenic strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Woodland rhizospheric isolates of B. cepacia are potentially good candidates for use in bioremediation and biocontrol, as they appear distinct from plant or human pathogenic strains.  相似文献   
199.
200.
The development of freshwater multispecies biofilms at solid-liquid interfaces occurs both in quiescent waters and under conditions of high shear rates. However, the influence of hydrodynamic shear rates on bacterial biofilm diversity is poorly understood. We hypothesized that different shear rates would significantly influence biofilm diversity and alter the relative proportions of coaggregating and autoaggregating community isolates. In order to study this hypothesis, freshwater biofilms were developed at five shear rates (<0.1 to 305 S(-1)) in a rotating concentric cylinder reactor fed with untreated potable water. Eubacterial diversity was assessed by denaturing gradient gel electrophoresis (DGGE) and culturing on R2A agar. Fifty morphologically distinct biofilm strains and 16 planktonic strains were isolated by culturing and identified by partial 16S rRNA gene sequencing, and their relatedness was determined by the construction of a neighbor-joining phylogenetic tree. Phylogenetic and DGGE analyses showed an inverse relationship between shear rate and bacterial diversity. An in vitro aggregation assay was used to assess the relative proportions of coaggregating and autoaggregating species from each biofilm. The highest proportion of autoaggregating bacteria was present at high shear rates (198 to 305 S(-1)). The intermediate shear rate (122 S(-1)) selected for the highest proportion of coaggregating bacteria (47%, or 17 of a possible 36 coaggregation interactions). Under static conditions (<0.1 S(-1)), 41 (33%) of a possible 125 coaggregation interactions were positive. Few coaggregation (3.3%) or autoaggregation (25%) interactions occurred between the 16 planktonic strains. In conclusion, these data show that shear rates affect biofilm diversity as well as the relative proportions of aggregating bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号