首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1447篇
  免费   184篇
  1631篇
  2022年   13篇
  2021年   16篇
  2019年   18篇
  2018年   16篇
  2017年   12篇
  2016年   17篇
  2015年   44篇
  2014年   43篇
  2013年   59篇
  2012年   70篇
  2011年   76篇
  2010年   45篇
  2009年   59篇
  2008年   49篇
  2007年   47篇
  2006年   46篇
  2005年   54篇
  2004年   53篇
  2003年   54篇
  2002年   47篇
  2001年   54篇
  2000年   40篇
  1999年   41篇
  1998年   20篇
  1997年   17篇
  1996年   16篇
  1995年   20篇
  1994年   20篇
  1992年   26篇
  1991年   33篇
  1990年   20篇
  1989年   29篇
  1988年   24篇
  1987年   20篇
  1986年   19篇
  1985年   17篇
  1984年   26篇
  1983年   20篇
  1982年   28篇
  1981年   13篇
  1980年   12篇
  1979年   19篇
  1977年   12篇
  1976年   18篇
  1975年   16篇
  1974年   17篇
  1973年   20篇
  1972年   16篇
  1971年   13篇
  1969年   19篇
排序方式: 共有1631条查询结果,搜索用时 15 毫秒
91.
92.
New staining techniques continue to be introduced, and older ones continue to be used and improved. Several factors control specificity, selectivity and visibility of the end product in any procedure using dyes, fluorochromes, inorganic reagents or histochemical reactions applied to sections or similar preparations. Local concentration of the tissue target often determines the intensity of the observed color, as does the fine structure within the object being stained, which may facilitate or impede diffusion of dyes and other reagents. Several contributions to affinity control the specificity of staining. These include electrical forces, which result in accumulation of dye ions in regions of oppositely charged tissue polyions. Weaker short-range attractions (hydrogen bonding, van der Waals forces or hydrophobic bonding, depending on the solvent) hold dyes ions and histochemical end products in contact with their macromolecular substrates. Nonionic forces can also increase visibility of stained sites by causing aggregation of dye molecules. Covalent bonds between dye and tissue result in the strongest binding, such as in methods using Schiff's reagent and possibly also some mordant dyes. The rate at which a reagent gains access to or is removed from targets in a section or other specimen affect what is stained, especially when more then one dye is used, together or sequentially. Rate-controlled staining is greatly influenced by the presence and type of embedding medium, such as a resin, that infiltrates the tissue. The rates of chemical reactions are major determinants of outcome in many histochemical techniques. Selective staining of different organelles within living cells is accomplished mainly with fluorochromes and is controlled by mechanisms different from those that apply to fixed tissues. Quantitative structure-activity relations (QSAR) of such reagents can be derived from such molecular properties as hydrophilic-hydrophobic balance, extent of conjugated bond systems, acid-base properties and ionic charge. The QSAR correlates with staining of endoplasmic reticulum, lysosomes, mitochondria, DNA, or the plasma membranes of living cells.  相似文献   
93.
An anionic potato peroxidase (EC 1.11.1.7, APP) thought to be involved in suberization after wounding was isolated from slices of Solanum tuberosum in order to elucidate the first steps of dehydrogenative polymerization between pairs of different hydroxycinnamic acids (FA, CafA, CA and SA) present in wound-healing plant tissues. Use of a commercial horseradish peroxidase (HRP)-H2O2 catalytic system gave the identical major products in these coupling reactions, providing sufficient quantities for purification and structural elucidation. Using an equimolar mixture of pairs of hydroxycinnamic acid suberin precursors, only caffeic acid is coupled to ferulic acid and sinapic acid in separate cross-coupling reactions. For the other systems, HRP and APP reacted as follows: (1) preferentially with ferulic acid in a reaction mixture that contained p-coumaric and ferulic acids; (2) with sinapic acid in a mixture of p-coumaric and sinapic acids; (3) with sinapic acid in a mixture of ferulic and sinapic acids; (4) with caffeic acid in a reaction mixture of p-coumaric and caffeic acids. The resulting products, isolated and identified by NMR and MS analysis, had predominantly beta-beta-gamma-lactone and beta-5 benzofuran molecular frameworks. Five cross-coupling products are described for the first time, whereas the beta-O-4 dehydrodimers identified from the caffeic acid and sinapic acid cross-coupling reaction are known materials that are highly abundant in plants. These reactivity trends lead to testable hypotheses regarding the molecular architecture of intractable suberin protective plant materials, complementing prior analysis of monomeric constituents by GC-MS and polymer functional group identification from solid-state NMR, respectively.  相似文献   
94.
Covalent immobilization of lipase in organic solvents   总被引:3,自引:0,他引:3  
Lipase from Rhizopus sp. has been immobilized covalently on tresyl activated silica. Three different coupling media were evaluated: aqueous buffer, n-hexane, and a microemulsion based on n-hexane, aqueous buffer, and the nonionic surfactant triethylene glycol monododecyl ether. In addition, coupling via a very long, hydrophilic spacer arm, polyethylene glycol 1500 (PEG 1500), was compared with attachment to the silica via a short silane bridge only. The enzyme preparations were tested in hydrolysis and transesterification reactions. In the hydrolysis no marked differences in activity were found between the coupling media used. In the transesterification, on the other hand, the choice of immobilization medium had a very large effect on lipase activity, the preparation from microemulsion being the most active one. The use of the hydrophilic spacer had a large effect on activity in the hydrolysis reaction. Whereas direct coupling gave an activity of immobilized lipase of 26-34% of that of free enzyme, depending on the reaction medium, lipase bound via the spacer exhibited 56-67% activity. The latter values are considerably higher than previously reported in the literature for covalently immobilized lipase. The hydrophilic spacer had no effect on enzyme activity in the transesterification, however, a fact which is attributed to the hydrophobic medium of this reaction. The spacer is incompatible with the reaction medium and will, therefore, adsorb on the particles rather than stretch out into the bulk phase. The stability of the bound lipase was extremely good, no loss in activity being observed after a period of three weeks in aqueous solution of 37 degrees C.  相似文献   
95.
96.
Large-scale candidate gene analysis of HDL particle features   总被引:1,自引:0,他引:1  

Background

HDL cholesterol (HDL-C) is an established marker of cardiovascular risk with significant genetic determination. However, HDL particles are not homogenous, and refined HDL phenotyping may improve insight into regulation of HDL metabolism. We therefore assessed HDL particles by NMR spectroscopy and conducted a large-scale candidate gene association analysis.

Methodology/Principal Findings

We measured plasma HDL-C and determined mean HDL particle size and particle number by NMR spectroscopy in 2024 individuals from 512 British Caucasian families. Genotypes were 49,094 SNPs in >2,100 cardiometabolic candidate genes/loci as represented on the HumanCVD BeadChip version 2. False discovery rates (FDR) were calculated to account for multiple testing. Analyses on classical HDL-C revealed significant associations (FDR<0.05) only for CETP (cholesteryl ester transfer protein; lead SNP rs3764261: p = 5.6*10−15) and SGCD (sarcoglycan delta; rs6877118: p = 8.6*10−6). In contrast, analysis with HDL mean particle size yielded additional associations in LIPC (hepatic lipase; rs261332: p = 6.1*10−9), PLTP (phospholipid transfer protein, rs4810479: p = 1.7*10−8) and FBLN5 (fibulin-5; rs2246416: p = 6.2*10−6). The associations of SGCD and Fibulin-5 with HDL particle size could not be replicated in PROCARDIS (n = 3,078) and/or the Women''s Genome Health Study (n = 23,170).

Conclusions

We show that refined HDL phenotyping by NMR spectroscopy can detect known genes of HDL metabolism better than analyses on HDL-C.  相似文献   
97.
Mutant Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate, a potent and specific inhibitor of aspartate transcarbamylase, have amplified the gene coding for the multifunctional protein (CAD) that includes this activity. The average amount of DNA amplified is approximately 500 kilobases per gene copy, about 20 times the length of the CAD gene itself. A differential screening method which uses genomic DNAs as probes was developed to isolate recombinant phage containing fragments of amplified DNA. One probe was prepared by reassociating fragments of total genomic DNA from 165-28, a mutant cell line with 190 times the wild-type complement of CAD genes, until all of the sequences repeated about 200 times were annealed and then isolating the double-stranded DNA with hydroxyapatite.This DNA was highly enriched in sequences from the entire amplified region, whereas the same sequences were very rare in DNA prepared similarly from wild-type cells. After both DNAs were labeled by nick translation, highly repeated sequences were removed by hybridization to immobilized total genomic DNA from wild-type cells. A library of cloned DNA fragments from mutant 165-28 was screened with both probes, and nine independent fragments containing about 165 kilobases of amplified DNA, including the CAD gene, have been isolated so far. These cloned DNAs can be used to study the structure of the amplified region, to evaluate the nature of the amplification event, and to investigate gene expression from the amplified DNA. For example, one amplified fragment included a gene coding for a 3.8-kilobase, cytoplasmic, polyadenylated RNA which was overproduced greatly in cells resistant to N-(phosphonacetyl)-L-aspartate. The method for cloning amplified DNA is general and can be used to evaluate the possible involvement of gene amplification in phenomena such as drug resistance, transformation, or differentiation. DNA fragments corresponding to any region amplified about 10-fold or more can be cloned, even if no function for the region is known. The method for removing highly repetitive sequences from genomic DNA probes should also be of general use.  相似文献   
98.
Follicle-Stimulating Hormone (FSH) at a wide range of doses is routinely added to culture media during in vitro maturation (IVM) of oocytes, but the effects on oocyte health are unclear. The suggestion that superovulation may cause aneuploidy and fetal abnormalities prompted us to study the potential role of FSH in the genesis of chromosomal abnormalities during meiosis I. Mouse cumulus-oocyte complexes (COCs) isolated from the antral follicles of unprimed, sexually immature B6CBF1 mice were cultured in increasing concentrations of FSH. Following culture, matured oocytes were isolated, spread, stained with DAPI, and the numbers of chromosomes counted. Significantly increased aneuploidy, arising during the first meiotic division, was observed in metaphase II oocytes matured in higher concentrations of FSH (> or =20 ng/ml). The effect of FSH on spindle morphology and chromosome alignment during metaphase I was then explored using immunocytochemistry and three-dimensional reconstruction of confocal sections. High FSH had no effect on gross spindle morphology but did alter chromosome congression during prometaphase and metaphase, with the spread of chromosomes across the spindle at this time being significantly greater in oocytes cultured in 2000 ng/ml compared with 2 ng/ml FSH. Analysis of three-dimensional reconstructions of spindles in oocytes matured in 2000 ng/ml FSH shows that chromosomes are more scattered and farther apart than they are following maturation in 2 ng/ml FSH. These results demonstrate that exposure to high levels of FSH during IVM can accelerate nuclear maturation and induce chromosomal abnormalities and highlights the importance of the judicious use of FSH during IVM.  相似文献   
99.
BACKGROUND: 14-3-3 proteins are abundant and conserved polypeptides that mediate the cellular effects of basophilic protein kinases through their ability to bind specific peptide motifs phosphorylated on serine or threonine. RESULTS: We have used mass spectrometry to analyze proteins that associate with 14-3-3 isoforms in HEK293 cells. This identified 170 unique 14-3-3-associated proteins, which show only modest overlap with previous 14-3-3 binding partners isolated by affinity chromatography. To explore this large set of proteins, we developed a domain-based hierarchical clustering technique that distinguishes structurally and functionally related subsets of 14-3-3 target proteins. This analysis revealed a large group of 14-3-3 binding partners that regulate cytoskeletal architecture. Inhibition of 14-3-3 phosphoprotein recognition in vivo indicates the general importance of such interactions in cellular morphology and membrane dynamics. Using tandem proteomic and biochemical approaches, we identify a phospho-dependent 14-3-3 binding site on the A kinase anchoring protein (AKAP)-Lbc, a guanine nucleotide exchange factor (GEF) for the Rho GTPase. 14-3-3 binding to AKAP-Lbc, induced by PKA, suppresses Rho activation in vivo. CONCLUSION: 14-3-3 proteins can potentially engage around 0.6% of the human proteome. Domain-based clustering has identified specific subsets of 14-3-3 targets, including numerous proteins involved in the dynamic control of cell architecture. This notion has been validated by the broad inhibition of 14-3-3 phosphorylation-dependent binding in vivo and by the specific analysis of AKAP-Lbc, a RhoGEF that is controlled by its interaction with 14-3-3.  相似文献   
100.
Assigning function to structures is an important aspect of structural genomics projects, since they frequently provide structures for uncharacterized proteins. Similarities uncovered by structure alignment can suggest a similar function, even in the absence of sequence similarity. For proteins adopting novel folds or those with many functions, this strategy can fail, but functional clues can still come from comparison of local functional sites involving a few key residues. Here we assess the general applicability of functional site comparison through the study of 157 proteins solved by structural genomics initiatives. For 17, the method bolsters confidence in predictions made based on overall fold similarity. For another 12 with new folds, it suggests functions, including a putative phosphotyrosine binding site in the Archaeal protein Mth1187 and an active site for a ribose isomerase. The approach is applied weekly to all new structures, providing a resource for those interested in using structure to infer function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号