首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1532篇
  免费   187篇
  1719篇
  2021年   18篇
  2019年   19篇
  2018年   18篇
  2016年   17篇
  2015年   50篇
  2014年   43篇
  2013年   53篇
  2012年   70篇
  2011年   79篇
  2010年   49篇
  2009年   66篇
  2008年   49篇
  2007年   49篇
  2006年   45篇
  2005年   52篇
  2004年   54篇
  2003年   52篇
  2002年   45篇
  2001年   54篇
  2000年   40篇
  1999年   46篇
  1998年   23篇
  1997年   18篇
  1996年   21篇
  1995年   23篇
  1994年   21篇
  1993年   13篇
  1992年   28篇
  1991年   39篇
  1990年   25篇
  1989年   31篇
  1988年   26篇
  1987年   24篇
  1986年   22篇
  1985年   20篇
  1984年   27篇
  1983年   21篇
  1982年   30篇
  1981年   15篇
  1980年   13篇
  1979年   21篇
  1978年   13篇
  1977年   16篇
  1976年   19篇
  1975年   18篇
  1974年   19篇
  1973年   21篇
  1972年   16篇
  1971年   14篇
  1969年   19篇
排序方式: 共有1719条查询结果,搜索用时 15 毫秒
71.
Crystal structures are known for three members of the bacterial neutral protease family: thermolysin from Bacillus thermoproteolyticus (TLN), the neutral protease from Bacillus cereus (NEU), and the elastase of Pseudomonas aeruginosa (PAE), both in free and ligand-bound forms. Each enzyme consists of an N-terminal and C-terminal domain with the active site formed at the junction of the two domains. Comparison of the different molecules reveals that the structure within each domain is well conserved, but there are substantial hinge-bending displacements (up to 16 degrees) of one domain relative to the other. These domain motions can be correlated with the presence or absence of bound inhibitor, as was previously observed in the specific example of PAE [Thayer, M.M., Flaherty, K.M., & McKay, D.B. (1991) J. Biol. Chem. 266, 2864-2871]. The binding of inhibitor appears to be associated with a reduction of the domain hinge-bending angle by 6-14 degrees and a closure of the "jaws" of the active site cleft by about 2 A. Crystallographic refinement of the structure of thermolysin suggests that electron density seen in the active site of the enzyme in the original structure determination probably corresponds to a bound dipeptide. Thus, the crystal structure appears to correspond to an enzyme-inhibitor or enzyme-product complex, rather than the free enzyme, as has previously been assumed.  相似文献   
72.
Type IV pili (Tfp) are prokaryotic retractable appendages known to mediate surface attachment, motility, and subsequent clustering of cells. Tfp are the main means of motility for Neisseria gonorrhoeae, the causative agent of gonorrhea. Tfp are also involved in formation of the microcolonies, which play a crucial role in the progression of the disease. While motility of individual cells is relatively well understood, little is known about the dynamics of N. gonorrhoeae aggregation. We investigate how individual N. gonorrhoeae cells, initially uniformly dispersed on flat plastic or glass surfaces, agglomerate into spherical microcolonies within hours. We quantify the clustering process by measuring the area fraction covered by the cells, number of cell aggregates, and their average size as a function of time. We observe that the microcolonies are also able to move but their mobility rapidly vanishes as the size of the colony increases. After a certain critical size they become immobile. We propose a simple theoretical model which assumes a pili-pili interaction of cells as the main clustering mechanism. Numerical simulations of the model quantitatively reproduce the experimental data on clustering and thus suggest that the agglomeration process can be entirely explained by the Tfp-mediated interactions. In agreement with this hypothesis mutants lacking pili are not able to form colonies. Moreover, cells with deficient quorum sensing mechanism show similar aggregation as the wild-type bacteria. Therefore, our results demonstrate that pili provide an essential mechanism for colony formation, while additional chemical cues, for example quorum sensing, might be of secondary importance.  相似文献   
73.
74.

Background

Inflammation may lead to tissue injury. We have studied the modulation of inflammatory milieu-induced tissue injury, as exemplified by the mesothelium. Peritoneal dialysis is complicated by peritonitis episodes that cause loss of mesothelium. Proinflammatory cytokines are increased in the peritoneal cavity during peritonitis episodes. However there is scarce information on the modulation of cell death by combinations of cytokines and on the therapeutic targets to prevent desmesothelization.

Methodology

Human mesothelial cells were cultured from effluents of stable peritoneal dialysis patients and from omentum of non-dialysis patients. Mesothelial cell death was studied in mice with S. aureus peritonitis and in mice injected with tumor necrosis factor alpha and interferon gamma.Tumor necrosis factor alpha and interferon gamma alone do not induce apoptosis in cultured mesothelial cells. By contrast, the cytokine combination increased the rate of apoptosis 2 to 3-fold over control. Cell death was associated with the activation of caspases and a pancaspase inhibitor prevented apoptosis. Specific caspase-8 and caspase-3 inhibitors were similarly effective. Co-incubation with both cytokines also impaired mesothelial wound healing in an in vitro model. However, inhibition of caspases did not improve wound healing and even impaired the long-term recovery from injury. By contrast, a polymeric nanoconjugate Apaf-1 inhibitor protected from apoptosis and allowed wound healing and long-term recovery. The Apaf-1 inhibitor also protected mesothelial cells from inflammation-induced injury in vivo in mice.

Conclusion

Cooperation between tumor necrosis factor alpha and interferon gamma contributes to mesothelial injury and impairs the regenerative capacity of the monolayer. Caspase inhibition attenuates mesothelial cell apoptosis but does not facilitate regeneration. A drug targeting Apaf-1 allows protection from apoptosis as well as regeneration in the course of inflammation-induced tissue injury.  相似文献   
75.
Acute respiratory virus infections are often associated with an early influx of neutrophils (PMN) into the airways. Maximal cytoxic injury by PMN depends on tight cell-cell adhesion. Infection of some cell types by respiratory and other viruses has been shown to increase PMN adhesion to these cells by undefined mechanisms. We studied adhesion by human PMN to monolayers of primary (1 degree) human tracheal epithelial cells (TEC) or an immortalized cell line derived from human TEC, 9HTEo-, that had been infected with parainfluenza virus type 2 (PiV2). PMN adhesion to uninfected 1 degree TEC was very low (< 5%), but PMN adhesion to PiV2-infected 1 degree TEC was greatly increased (89 +/- 7%). PMN adhesion to 9HTEo- cells was 47 +/- 6%, but increased, 87 +/- 8%, for PiV2-infected 9HTEo- cells. Surface intercellular adhesion molecule-1 (ICAM-1) expression on 1 degree TEC, as determined by immunofluorescence flow cytometry, was relatively low (23 fluorescence units) but doubled by 24 h after PiV2 infection and tripled by 48 h. The 9HTEo- cells constitutively expressed higher levels of surface ICAM-1 (120 units) which did not increase with PiV2 infection. Treatment of non-PiV2-infected 9HTEo- cells with mAb (R6.5) to ICAM-1 reduced PMN adhesion to these cells from 47 +/- 8 to 23 +/- 5%. Identical mAb treatment of either 1 degree TEC or 9HTEo- cells infected with PiV2 had no significant effect on PMN adhesion. Treatment of the PMN with mAb against CD11a, CD11b, or CD18 markedly reduced PMN adhesion to PiV2-infected 1 degree TEC and 9HTEo- cells. We conclude that PiV2 infection of human TEC causes a marked increase in their adhesive interactions with PMN by inducing increased surface expression of both ICAM-1 and one or more, as yet uncharacterized, non-ICAM-1 adhesion molecules that function as counter-receptors for CD11/CD18 on PMN. These mechanisms of adhesion may play a role in epithelial damage during acute respiratory virus infections.  相似文献   
76.
77.
An agricultural soil was treated with dairy-waste compost, ammonium-sulfate fertilizer or no added nitrogen (control) and planted to silage corn for 6 years. The kinetics of nitrification were determined in laboratory-shaken slurry assays with a range of substrate concentrations (0-20 mM NH(4)(+)) over a 24-h period for soils from the three treatments. Determined concentrations of substrate and product were fit to Michaelis-Menten and Haldane models. For all the treatments, the Haldane model was a better fit, suggesting that significant nitrification inhibition may occur in soils under high ammonium conditions similar to those found immediately after fertilization or waste applications. The maximum rate of nitrification (V(max)) was significantly higher for the fertilized and compost-treated soils (1.74 and 1.50 mmol N kg(-1) soil day(-1)) vs. control soil (0.98 mmol kg(-1) soil day(-1)). The K(m) and K(i) values were not significantly different, with average values of 0.02 and 27 mM NH(4)(+), respectively. Our results suggest that both N sources increased nitrifier community size, but did not shift the nitrifier community structure in ways that influenced enzyme affinity or sensitivity to ammonium. The K(m) values are comparable to those determined directly in other soils, but are substantially lower than those from most pure cultures of ammonia-oxidizing bacteria.  相似文献   
78.
Studies were conducted in Hawaii to measure attraction of male melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), to SPLAT-Cue-Lure (C-L) and SPLAT-Melo-Lure (M-L) (raspberry ketone formate). Direct field comparisons of SPLAT-C-L and SPLAT-M-L at low (5%) and high (20%) concentrations indicated few differences in attraction over a 15-wk period. Subsequently, only SPLAT-Spinosad-C-L (5%) was compared with Min-U-Gel C-L with naled (standard used in California) in weathering studies. Treatments were weathered for 1, 2, 4, and 8 wk in Riverside, CA, and shipped to Hawaii for attraction/toxicity tests under field and semifield conditions by using released males of controlled ages, and for feeding tests in the laboratory. In terms of attraction, SPLAT-Spinosad-C-L compared favorably to, or outperformed the current standard of Min-U-Gel-C-L with naled. In terms of toxicity, the cumulative 24-h mortality did not differ between the two insecticide-containing C-L treatments in field cage studies after 8 wk. However, in feeding studies in which individual males were exposed for 5 min to the different C-L treatments after 4 wk of weathering, SPLAT-Spinosad-C-L demonstrated reduced mortality compared with the Min-U-Gel-C-L with naled, suggesting reduced persistence of the spinosad material. Spinosad has low contact toxicity and when mixed with SPLAT and C-L offers a reduced risk alternative for control of B. cucurbitae and related C-L-responding species, without many of the negative effects to humans and nontargets of broad-spectrum contact poisons such as naled.  相似文献   
79.
80.
Hypervirulent K. pneumoniae (hvKp) is a distinct pathotype that causes invasive community-acquired infections in healthy individuals. Hypermucoviscosity (hmv) is a major phenotype associated with hvKp characterized by copious capsule production and poor sedimentation. Dissecting the individual functions of CPS production and hmv in hvKp has been hindered by the conflation of these two properties. Although hmv requires capsular polysaccharide (CPS) biosynthesis, other cellular factors may also be required and some fitness phenotypes ascribed to CPS may be distinctly attributed to hmv. To address this challenge, we systematically identified genes that impact capsule and hmv. We generated a condensed, ordered transposon library in hypervirulent strain KPPR1, then evaluated the CPS production and hmv phenotypes of the 3,733 transposon mutants, representing 72% of all open reading frames in the genome. We employed forward and reverse genetic screens to evaluate effects of novel and known genes on CPS biosynthesis and hmv. These screens expand our understanding of core genes that coordinate CPS biosynthesis and hmv, as well as identify central metabolism genes that distinctly impact CPS biosynthesis or hmv, specifically those related to purine metabolism, pyruvate metabolism and the TCA cycle. Six representative mutants, with varying effect on CPS biosynthesis and hmv, were evaluated for their impact on CPS thickness, serum resistance, host cell association, and fitness in a murine model of disseminating pneumonia. Altogether, these data demonstrate that hmv requires both CPS biosynthesis and other cellular factors, and that hmv and CPS may serve distinct functions during pathogenesis. The integration of hmv and CPS to the metabolic status of the cell suggests that hvKp may require certain nutrients to specifically cause deep tissue infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号