首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   53篇
  351篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   14篇
  2014年   6篇
  2013年   13篇
  2012年   21篇
  2011年   11篇
  2010年   14篇
  2009年   17篇
  2008年   14篇
  2007年   16篇
  2006年   16篇
  2005年   10篇
  2004年   14篇
  2003年   7篇
  2002年   13篇
  2001年   8篇
  2000年   17篇
  1999年   14篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1977年   3篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
  1962年   2篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
  1955年   1篇
  1947年   1篇
  1937年   1篇
  1928年   1篇
排序方式: 共有351条查询结果,搜索用时 10 毫秒
291.
292.
The Eph family of receptor tyrosine kinases regulates numerous biological processes. To examine the biochemical and developmental contributions of specific structural motifs within Eph receptors, wild-type or mutant forms of the EphA4 receptor were ectopically expressed in developing Xenopus embryos. Wild-type EphA4 and a mutant lacking both the SAM domain and PDZ binding motif were constitutively tyrosine phosphorylated in vivo and catalytically active in vitro. EphA4 induced loss of cell adhesion, ventro-lateral protrusions, and severely expanded posterior structures in Xenopus embryos. Moreover, mutation of a conserved SAM domain tyrosine to phenylalanine (Y928F) enhanced the ability of EphA4 to induce these phenotypes, suggesting that the SAM domain may negatively regulate some aspects of EphA4 activity in Xenopus. Analysis of double mutants revealed that the Y928F EphA4 phenotypes were dependent on kinase activity; juxtamembrane sites of tyrosine phosphorylation and SH2 domain-binding were required for cell dissociation, but not for posterior protrusions. The induction of protrusions and expansion of posterior structures is similar to phenotypic effects observed in Xenopus embryos expressing activated FGFR1. Furthermore, the budding ectopic protrusions induced by EphA4 express FGF-8, FGFR1, and FGFR4a. In addition, antisense morpholino oligonucleotide-mediated loss of FGF-8 expression in vivo substantially reduced the phenotypic effects in EphA4Y928F expressing embryos, suggesting a connection between Eph and FGF signaling.  相似文献   
293.
Abstract

Vapour-liquid phase diagrams for pure fluids and mixtures of molecules with Lennard-Jones plus quadrupole-quadrupole interaction potentials were determined by Monte Carlo simulation in the Gibbs ensemble [1]. This is the first reported application of the method to molecular fluids. We have demonstrated that the Gibbs method works reliably for strongly interacting molecular fluids at liquid densities. Pure fluid calculations were performed for reduced quadrupole strengths, Q* = Q/(εσ5)1/2 equal to 1 and √2, typical of molecules like C2H2 and C2H4. It was found that the critical temperature of the quadrupolar fluid increased rapidly with increasing quadrupolar strength, in good agreement with previous computer simulation and theoretical results. A single mixture with components characterized by identical Lennard-Jones parameters and Q*1 = + 1, Q*2 = - 1 was studied at three temperatures. A negative azeotrope was observed at the lowest temperature studied, as seen experimentally in the CO2/C2H2 mixture. The perturbation theory calculations are in good agreement with the simulation results for all properties except coexisting liquid densities. The results illustrate some of the strengths and limitations of perturbation theories based on the Padé approximant for the free energy of polar fluids.  相似文献   
294.
Diverse flavonoid compounds are widely distributed in angiosperm families. Flavonoids absorb radiation in the ultraviolet (UV) region of the spectrum, and it has been proposed that these compounds function as UV filters. We demonstrate that the DNA in Zea mays plants that contain flavonoids (primarily anthocyanins) is protected from the induction of damage caused by UV radiation relative to the DNA in plants that are genetically deficient in these compounds. DNA damage was measured with a sensitive and simple assay using individual monoclonal antibodies, one specific for cyclobutane pyrimidine dimer damage and the other specific for pyrimidine(6,4)pyrimidone damage.  相似文献   
295.
Remote-controlled Ca2+ influx, elicited by electropotential waves, triggers local signaling cascades in sieve elements and companion cells along the phloem of Vicia faba plants. The stimulus strength seems to be communicated by the rate and duration of Ca2+ influx into sieve elements (SEs). The cooperative recruitment of Ca2+ channels results in a graded response of forisome culminating in full sieve-tube occlusion. Several lines of evidence are integrated into a model that links the mode and strength of the electropotential waves (EPWs) with forisome dispersion, mediated by transiently enhanced levels of local Ca2+ release dependent on both plasma membrane and ER Ca2+ channels.Key words: distant injury, electropotential wave, remote sieve tube occlusion, activity of sieve element Ca2+ channels, signal cascades, Ca2+ hotspots  相似文献   
296.
Nonalchoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction and is associated with metabolic diseases, including obesity, insulin resistance, and type 2 diabetes. We mapped a quantitative trait locus (QTL) for NAFLD to chromosome 17 in a cross between C57BL/6 (B6) and BTBR mouse strains made genetically obese with the Lep(ob/ob) mutation. We identified Tsc2 as a gene underlying the chromosome 17 NAFLD QTL. Tsc2 functions as an inhibitor of mammalian target of rapamycin, which is involved in many physiological processes, including cell growth, proliferation, and metabolism. We found that Tsc2(+/-) mice have increased lipogenic gene expression in the liver in an insulin-dependent manner. The coding single nucleotide polymorphism between the B6 and BTBR strains leads to a change in the ability to inhibit the expression of lipogenic genes and de novo lipogenesis in AML12 cells and to promote the proliferation of Ins1 cells. This difference is due to a different affinity of binding to Tsc1, which affects the stability of Tsc2.  相似文献   
297.
Controlled renewal of the epithelium with precise cell distribution and gene expression patterns is essential for colonic function. GATA6 is expressed in the colonic epithelium, but its function in the colon is currently unknown. To define GATA6 function in the colon, we conditionally deleted Gata6 throughout the epithelium of small and large intestines of adult mice. In the colon, Gata6 deletion resulted in shorter, wider crypts, a decrease in proliferation, and a delayed crypt-to-surface epithelial migration rate. Staining techniques and electron microscopy indicated deficient maturation of goblet cells, and coimmunofluorescence demonstrated alterations in specific hormones produced by the endocrine L cells and serotonin-producing cells. Specific colonocyte genes were significantly downregulated. In LS174T, the colonic adenocarcinoma cell line, Gata6 knockdown resulted in a significant downregulation of a similar subset of goblet cell and colonocyte genes, and GATA6 was found to occupy active loci in enhancers and promoters of some of these genes, suggesting that they are direct targets of GATA6. These data demonstrate that GATA6 is necessary for proliferation, migration, lineage maturation, and gene expression in the mature colonic epithelium.  相似文献   
298.
The phenotypic and genotypic adaptation of a freshwater sedimentary microbial community to elevated (22 to 217 μg g [dry weight] of sediment−1) levels of polycyclic aromatic hydrocarbons (PAHs) was determined by using an integrated biomolecular approach. Central to the approach was the use of phospholipid fatty acid (PLFA) profiles to characterize the microbial community structure and nucleic acid analysis to quantify the frequency of degradative genes. The study site was the Little Scioto River, a highly impacted, channelized riverine system located in central Ohio. This study site is a unique lotic system, with all sampling stations having similar flow and sediment characteristics both upstream and downstream from the source of contamination. These characteristics allowed for the specific analysis of PAH impact on the microbial community. PAH concentrations in impacted sediments ranged from 22 to 217 μg g (dry weight) of sediment−1, while PAH concentrations in ambient sediments ranged from below detection levels to 1.5 μg g (dry weight) of sediment−1. Total microbial biomass measured by phospholipid phosphate (PLP) analysis ranged from 95 to 345 nmol of PLP g (dry weight) of sediment−1. Nucleic acid analysis showed the presence of PAH-degradative genes at all sites, although observed frequencies were typically higher at contaminated sites. Principal component analysis of PLFA profiles indicated that moderate to high PAH concentrations altered microbial community structure and that seasonal changes were comparable in magnitude to the effects of PAH pollution. These data indicate that this community responded to PAH contamination at both the phenotypic and the genotypic level.  相似文献   
299.
Abstract A multidisciplinary field study investigating the fate and transport of petroleum hydrocarbons commonly associated with jet-fuel contamination is currently underway at Columbus Air Force Base (AFB), Mississippi. Sixty sediment cores from 12 boreholes were recovered from the study aquifer. The goal of this initial sampling was to characterize the potential microbial activity using 14C-labeled substrates, as well as the presence, abundance, and distribution of specific hydrocarbon degrading genotypes using DNA:DNA hybridization. Enumeration of total microbial abundance using a 16S rDNA universal oligonucleotide probe was compared to traditional enumeration methods. Total culturable populations determined by spread plate analysis ranged from a low of 10(4) to more than 10(6) organisms per gram sediment. Microbial abundance estimated by DNA hybridization studies with 16S rDNA genes ranged from 10(7) to 10(8) organisms per gram sediment. Molecular analysis of aquifer samples using DNA probes targeting genes encoding the degradative enzymes alkane hydroxylase (alkB), catechol 2,3-dioxygenase (nahH), naphthalene dioxygenase (nahA), toluene dioxygenase (todC1C2), toluene monooxygenase (tomA), and xylene monooxygenase (xylA), as well as two probes measuring methanogenic microorganisms, codh (carbon monoxide dehydrogenase) and mcr (methyl coenzyme reductase), revealed that each target gene sequence was present in nearly all 60 samples. The presence of organisms demonstrating the phenotype to degrade BTEX and naphthalene was further supported using mineralization assays with 14C-labeled benzene, toluene, naphthalene, and phenanthrene. Minimal activity occurred during the first 24 hours. After a period of 5-7 days, greater than 40% of the target compounds were mineralized in aquifer sediments.  相似文献   
300.
K channels in the basolateral membrane of insect hindgut were studied using current fluctuation analysis and microelectrodes. Locust recta were mounted in Ussing-type chambers containing Cl-free saline and cyclic AMP (cAMP). A transepithelial K current was induced by raising serosal [K] under short-circuit conditions. Adding Ba to the mucosal (luminal) side under these conditions had no effect; however, serosal Ba reversibly inhibited the short-circuit current (Isc), increased transepithelial resistance (Rt), and added a Lorentzian component to power density spectra of the Isc. A nonlinear relationship between corner frequency and serosal [Ba] was observed, which suggests that the rate constant for Ba association with basolateral channels increased as [Ba] was elevated. Microelectrode experiments revealed that the basolateral membrane hyperpolarized when Ba was added: this change in membrane potential could explain the nonlinearity of the 2 pi fc vs. [Ba] relationship if external Ba sensed about three-quarters of the basolateral membrane field. Conventional microelectrodes were used to determine the correspondence between transepithelially measured current noise and basolateral membrane conductance fluctuations, and ion-sensitive microelectrodes were used to measure intracellular K activity (acK). From the relationship between the net electrochemical potential for K across the basolateral membrane and the single channel current calculated from noise analysis, we estimate that the conductance of basolateral K channels is approximately 60 pS, and that there are approximately 180 million channels per square centimeter of tissue area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号