首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   53篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   14篇
  2014年   6篇
  2013年   13篇
  2012年   21篇
  2011年   11篇
  2010年   14篇
  2009年   17篇
  2008年   14篇
  2007年   16篇
  2006年   16篇
  2005年   10篇
  2004年   14篇
  2003年   7篇
  2002年   13篇
  2001年   8篇
  2000年   17篇
  1999年   14篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1977年   3篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
  1962年   2篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
  1955年   1篇
  1947年   1篇
  1937年   1篇
  1928年   1篇
排序方式: 共有351条查询结果,搜索用时 31 毫秒
21.
To date, most new vaccines against Mycobacterium tuberculosis, including new recombinant versions of the current BCG vaccine, have usually been screened against the laboratory strains H37Rv or Erdman. In this study we took advantage of our recent work in characterizing an increasingly large panel of newly emerging clinical isolates [from the United States or from the Western Cape region of South Africa], to determine to what extent vaccines would protect against these [mostly high virulence] strains. We show here that both BCG Pasteur and recombinant BCG Aeras-422 [used here as a good example of the new generation BCG vaccines] protected well in both mouse and guinea pig low dose aerosol infection models against the majority of clinical isolates tested. However, Aeras-422 was not effective in a long term survival assay compared to BCG Pasteur. Protection was very strongly expressed against all of the Western Cape strains tested, reinforcing our viewpoint that any attempt at boosting BCG would be very difficult to achieve statistically. This observation is discussed in the context of the growing argument made by others that the failure of a recent vaccine trial disqualifies the further use of animal models to predict vaccine efficacy. This viewpoint is in our opinion completely erroneous, and that it is the fitness of prevalent strains in the trial site area that is the centrally important factor, an issue that is not being addressed by the field.  相似文献   
22.
Between 1995 and 2003, 15 reclamation projects using passive treatment systems were installed in a 70-km2 watershed to reduce acid mine drainage (AMD) impacts from coal mining. Six stream sites were sampled for water chemistry and benthic diatoms on 15 dates from 1996 to 2005; 1 unimpacted reference stream, 4 downstream of treatment systems, and 1 AMD-impacted site with no treatment. Our objective was to determine if diatom communities have responded to restoration by comparing temporal trends at sites downstream of treatment to concurrent trends at untreated and reference sites. Water chemistry at the sites corresponded spatially to AMD sources within the watershed. All sites below treatment had a significant increase in pH. Diatom communities provided several lines of evidence that treatment had lessen AMD impacts over the 10 year study: (1) the percentage of circumneutral taxa significantly increased at 3 of the 4 sites below treatment; (2) the percentage of circumnuetral taxa averaged for all sites below treatment increased significantly; and (3) temporal changes in community composition were significantly directional for 3 of 4 treated sites, becoming progressively more similar to reference communities. This study emphasizes the importance of long-term data sets for assessing recovery of streams following large-scale restoration.  相似文献   
23.

Background  

Understanding of the genetic architecture of plant UV-B responses allows extensive targeted testing of candidate genes or regions, along with combinations of those genes, for placement in metabolic or signal transduction pathways.  相似文献   
24.
Apolipoprotein amyloid deposits and lipid oxidation products are colocalized in human atherosclerotic tissue. In this study we show that the primary ozonolysis product of cholesterol, 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (KA), rapidly promotes human apolipoprotein (apo) C-II amyloid fibril formation in vitro. Previous studies show that hydrophobic aldehydes, including KA, modify proteins by the formation of a Schiff base with the lysine epsilon-amino group or N-terminal amino group. High-performance liquid chromatography, mass spectrometry, and proteolysis of KA-modified apoC-II revealed that KA randomly modified six different lysine residues, with primarily one KA attached per apoC-II molecule. Competition experiments showed that an aldehyde scavenging compound partially inhibited the ability of KA to hasten apoC-II fibril formation. Conversely, the acid derivative of KA, lacking the ability to form a Schiff base, accelerated apoC-II fibril formation, albeit to a lesser extent, suggesting that amyloidogenesis triggered by KA involves both covalent and noncovalent mechanisms. The viability of a noncovalent mechanism mediated by KA has been observed previously with alpha-synuclein aggregation, implicated in Parkinson's disease. Electron microscopy demonstrated that fibrils formed in the presence of KA had a similar morphology to native fibrils; however, the isolated KA-apoC-II covalent adducts in the absence of unmodified apoC-II formed fibrillar structures with altered ropelike morphologies. KA-mediated fibril formation by apoC-II was inhibited by the addition of the amine-containing compound hydralazine and the lipid-binding protein apoA-I. These in vitro studies suggest that the oxidized small molecule pool could trigger or hasten the aggregation of apoC-II to form amyloid deposits.  相似文献   
25.

Background  

Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years.  相似文献   
26.
The mammalian AMP-activated protein kinase (AMPK) is an obligatory αβγ heterotrimeric complex carrying a carbohydrate-binding module (CBM) in the β-subunit (AMPKβ) capable of attaching AMPK to glycogen. Nonetheless, AMPK localizes at many different cellular compartments, implying the existence of mechanisms that prevent AMPK from glycogen binding. Cell-free carbohydrate binding assays revealed that AMPK autophosphorylation abolished its carbohydrate-binding capacity. X-ray structural data of the CBM displays the central positioning of threonine 148 within the binding pocket. Substitution of Thr-148 for a phospho-mimicking aspartate (T148D) prevents AMPK from binding to carbohydrate. Overexpression of isolated CBM or β1-containing AMPK in cellular models revealed that wild type (WT) localizes to glycogen particles, whereas T148D shows a diffuse pattern. Pharmacological AMPK activation and glycogen degradation by glucose deprivation but not forskolin enhanced cellular Thr-148 phosphorylation. Cellular glycogen content was higher if pharmacological AMPK activation was combined with overexpression of T148D mutant relative to WT AMPK. In summary, these data show that glycogen-binding capacity of AMPKβ is regulated by Thr-148 autophosphorylation with likely implications in the regulation of glycogen turnover. The findings further raise the possibility of regulated carbohydrate-binding function in a wider variety of CBM-containing proteins.  相似文献   
27.

Background

Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue.

Methods

Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue.

Results

Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen.

Conclusions

Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large discrepancies, future studies should seek to employ vessel-appropriate material models to simulate the response of diseased femoral tissue in order to obtain the most accurate numerical results.
  相似文献   
28.

Background

Representation of independent biophysical sources using Fourier analysis can be inefficient because the basis is sinusoidal and general. When complex fractionated atrial electrograms (CFAE) are acquired during atrial fibrillation (AF), the electrogram morphology depends on the mix of distinct nonsinusoidal generators. Identification of these generators using efficient methods of representation and comparison would be useful for targeting catheter ablation sites to prevent arrhythmia reinduction.

Method

A data-driven basis and transform is described which utilizes the ensemble average of signal segments to identify and distinguish CFAE morphologic components and frequencies. Calculation of the dominant frequency (DF) of actual CFAE, and identification of simulated independent generator frequencies and morphologies embedded in CFAE, is done using a total of 216 recordings from 10 paroxysmal and 10 persistent AF patients. The transform is tested versus Fourier analysis to detect spectral components in the presence of phase noise and interference. Correspondence is shown between ensemble basis vectors of highest power and corresponding synthetic drivers embedded in CFAE.

Results

The ensemble basis is orthogonal, and efficient for representation of CFAE components as compared with Fourier analysis (p ≤ 0.002). When three synthetic drivers with additive phase noise and interference were decomposed, the top three peaks in the ensemble power spectrum corresponded to the driver frequencies more closely as compared with top Fourier power spectrum peaks (p ≤ 0.005). The synthesized drivers with phase noise and interference were extractable from their corresponding ensemble basis with a mean error of less than 10%.

Conclusions

The new transform is able to efficiently identify CFAE features using DF calculation and by discerning morphologic differences. Unlike the Fourier transform method, it does not distort CFAE signals prior to analysis, and is relatively robust to jitter in periodic events. Thus the ensemble method can provide a useful alternative for quantitative characterization of CFAE during clinical study.  相似文献   
29.
30.
The retinoid-related orphan receptor alpha (RORalpha), a member of the ROR subfamily of nuclear receptors, has been implicated in the control of a number of physiological processes, including the regulation of several immune functions. To study the potential role of RORalpha in the regulation of innate immune responses in vivo, we analyzed the induction of airway inflammation in response to lipopolysaccharide (LPS) challenge in wild-type and staggerer (RORalpha(sg/sg)) mice, a natural mutant strain lacking RORalpha expression. Examination of hematoxylin and eosin-stained lung sections showed that RORalpha(sg/sg) mice displayed a higher degree of LPS-induced inflammation than wild-type mice. Bronchoalveolar lavage (BAL) was performed at 3, 16, and 24 h after LPS exposure to monitor the increase in inflammatory cells and the level of several cytokines/chemokines. The increased susceptibility of RORalpha(sg/sg) mice to LPS-induced airway inflammation correlated with a higher number of total cells and neutrophils in BAL fluids from LPS-treated RORalpha(sg/sg) mice compared with those from LPS-treated wild-type mice. In addition, IL-1beta, IL-6, and macrophage inflammatory protein-2 were appreciably more elevated in BAL fluids from LPS-treated RORalpha(sg/sg) mice compared with those from LPS-treated wild-type mice. The enhanced susceptibility of RORalpha(sg/sg) mice appeared not to be due to a repression of IkappaBalpha expression. Our observations indicate that RORalpha(sg/sg) mice are more susceptible to LPS-induced airway inflammation and are in agreement with the hypothesis that RORalpha functions as a negative regulator of LPS-induced inflammatory responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号