全文获取类型
收费全文 | 216篇 |
免费 | 32篇 |
专业分类
248篇 |
出版年
2021年 | 2篇 |
2020年 | 3篇 |
2019年 | 5篇 |
2018年 | 4篇 |
2017年 | 5篇 |
2016年 | 6篇 |
2015年 | 7篇 |
2014年 | 8篇 |
2013年 | 5篇 |
2012年 | 9篇 |
2011年 | 10篇 |
2010年 | 10篇 |
2009年 | 6篇 |
2008年 | 9篇 |
2007年 | 7篇 |
2006年 | 9篇 |
2005年 | 3篇 |
2004年 | 6篇 |
2003年 | 6篇 |
2002年 | 10篇 |
2001年 | 13篇 |
2000年 | 4篇 |
1999年 | 4篇 |
1998年 | 4篇 |
1996年 | 2篇 |
1995年 | 5篇 |
1994年 | 3篇 |
1992年 | 7篇 |
1991年 | 5篇 |
1990年 | 6篇 |
1989年 | 3篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 4篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1980年 | 4篇 |
1979年 | 5篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 8篇 |
1975年 | 4篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1970年 | 2篇 |
1967年 | 3篇 |
1962年 | 2篇 |
1961年 | 2篇 |
1959年 | 1篇 |
排序方式: 共有248条查询结果,搜索用时 12 毫秒
81.
Brown JC Chung DJ Belgrave KR Staples JF 《American journal of physiology. Regulatory, integrative and comparative physiology》2012,302(1):R15-R28
During hibernation, animals cycle between periods of torpor, during which body temperature (T(b)) and metabolic rate (MR) are suppressed for days, and interbout euthermia (IBE), during which T(b) and MR return to resting levels for several hours. In this study, we measured respiration rates, membrane potentials, and reactive oxygen species (ROS) production of liver and skeletal muscle mitochondria isolated from ground squirrels (Ictidomys tridecemlineatus) during torpor and IBE to determine how mitochondrial metabolism is suppressed during torpor and how this suppression affects oxidative stress. In liver and skeletal muscle, state 3 respiration measured at 37°C with succinate was 70% and 30% lower, respectively, during torpor. In liver, this suppression was achieved largely via inhibition of substrate oxidation, likely at succinate dehydrogenase. In both tissues, respiration by torpid mitochondria further declined up to 88% when mitochondria were cooled to 10°C, close to torpid T(b). In liver, this passive thermal effect on respiration rate reflected reduced activity of all components of oxidative phosphorylation (substrate oxidation, phosphorylation, and proton leak). With glutamate + malate and succinate, mitochondrial free radical leak (FRL; proportion of electrons leading to ROS production) was higher in torpor than IBE, but only in liver. With succinate, higher FRL likely resulted from increased reduction state of complex III during torpor. With glutamate + malate, higher FRL resulted from active suppression of complex I ROS production during IBE, which may limit ROS production during arousal. In both tissues, ROS production and FRL declined with temperature, suggesting ROS production is also reduced during torpor by passive thermal effects. 相似文献
82.
Ninety-three isolates ofMetarhizium anisopliae,mostly derived from a survey of termite material, were screened for activity againstNasutitermes exitiosusandCoptotermes frenchiorC. acinaciformisusing a grooming assay technique. Twenty-six of the most promising isolates were further evaluated by bioassay againstN. exitiosusandC. acinaciformis.All isolates were pathogenic withCoptotermesspp. being more susceptible thanN. exitiosus.A group of nine isolates, chosen for their level of pathogenicity for one or other genus of termites and to represent a genetically diverse group, was finally compared in a minicolony test using termite colonies in 1 liter jars. The isolate, code-named FI-610 (derived from nest-mound material ofC. lacteusin SE New South Wales), was one of the most effective isolates against termites from both of the two colonies tested. This isolate also grew relatively well on agar plates at 36°C. FI-610 was thus selected for field trials and was found to be effective in killing colonies ofC. acinaciformiswhen 10 g (=3 × 1011conidia) or more of conidial powder was blown into the center of the large mound colonies. 相似文献
83.
Timothy L. Staples Margaret M. Mayfield Jacqueline R. England John M. Dwyer 《Restoration Ecology》2020,28(2):347-357
The clearing of natural vegetation for agriculture has reduced the capacity of natural systems to provide ecosystem functions. Ecological restoration can restore desirable ecosystem functions, such as creating habitat for animal conservation and carbon sequestration as woody biomass. In order to maintain these beneficial ecosystem functions, restoration projects need to mature into self‐perpetuating communities. Here we compared the ecological attributes of two types of restoration, “active” tree plantings with “passive” natural forest regeneration (“natural regrowth”) to existing remnant vegetation in a cleared agricultural landscape. Specifically, we measured differences between forest categories in factors that may predict future restoration failure or ecosystem collapse: aboveground plant biomass and biomass accrual over time (for regrowing stands), plant density and size class distributions, and diversity of functional groups based on seed dispersal and growth strategy traits. We found that natural regrowth and planted forests were similar in many ecological characteristics, including biomass accrual. Despite this, planted stands contained fewer tree recruit and shrub individuals, which may be due to limited recruitment in plantings. If this continues, these forests may be at risk of collapsing into nonforest states after mature trees senesce. Lower shrub density and richness of mid‐story trees may lead to lower structural complexity in planting plots, and alongside lower richness of fleshy‐fruited plant species may reduce animal resources and animal use of the restored stand. In our study region, natural regrowth may result in restored woodland communities with greater conservation and carbon mitigation value. 相似文献
84.
Page MM Peters CW Staples JF Stuart JA 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2009,152(1):115-122
Hibernating mammals exhibit oxidative stress resistance in brain, liver and other tissues. In many animals, cellular oxidative stress resistance is associated with enhanced expression of intracellular antioxidant enzymes. Intracellular antioxidant capacity may be upregulated during hibernation to protect against oxidative damage associated with the ischemia-reperfusion that occurs during transitions between torpor and arousal. We tested the hypothesis that the 13-lined ground squirrel (Spermophilus tridecemlineatus), upregulates intracellular antioxidant enzymes in major oxidative tissues during hibernation. The two major intracellular isoforms of superoxide dismutase (MnSOD and CuZnSOD), which catalyze the first step in superoxide detoxification, were quantified in heart, brain and liver tissue using immunodetection and an in-gel activity assay. However, no differences in SOD protein expression or activity were found between active and hibernating squirrels. Measurements of glutathione peroxidase and glutathione reductase, which catalyze hydrogen peroxide removal, were not broadly upregulated during hibernation. The activity of catalase, which catalyzes an alternative hydrogen peroxide detoxification pathway, was higher in heart and brain of torpid squirrels, but lower in liver. Taken together, these data do not support the hypothesis that hibernation is associated with enhanced oxidative stress resistance due to an upregulation of intracellular antioxidant enzymes in the major oxidative tissues. 相似文献
85.
86.
C8- and C9-alkylphenols and their ethoxylates (APE) are widely used commercial products mainly used in industrial applications, in the formulation of crop protection chemicals, and in industrial and household cleaners. Recent regulatory focus on these compounds has included an assessment of their potential to meet criteria for persistent, bioaccumulative, and toxic compounds (PBT). To fully evaluate either the relative persistence or bioaccumulation potential of any APE, degradation intermediates and metabolic by-products of these compounds should also be considered. To facilitate the evaluation of the ultimate fate of APE in the environment, a review of the degradation pathways and identification of degradation intermediates was performed (part I of a two-part series). In part II of this series, the relative persistence of APE as indicated by degradation half-lives was examined based on a review of abiotic and biological degradation data. To assess the bioaccumulation potential of APE, the relevant literature was also reviewed. The available data for C8- and C9-APE show that the commercial products and their degradation intermediates do not meet any national or international criteria for identifying these compounds as PBT substances. 相似文献
87.
88.
Stigma anatomy, pollen morphology, cotyledon structure and other traits suggest that two species formerly considered members ofMerremia fall outside an acceptable range of variation for that genus. A new genus,Xenostegia, is proposed for these two species. 相似文献
89.
90.
Stewart CR Tseng AA Mok YF Staples MK Schiesser CH Lawrence LJ Varghese JN Moore KJ Howlett GJ 《Biochemistry》2005,44(25):9108-9116
The macrophage scavenger receptor CD36 plays a key role in the initiation of atherosclerosis through its ability to bind to and internalize oxidized low-density lipoproteins (oxLDL). Prompted by recent findings that the CD36 receptor also recognizes amyloid fibrils formed by beta-amyloid and apolipoprotein C-II, we investigated whether the oxidation of low-density lipoproteins (LDL) generates characteristic amyloid-like structures and whether these structures serve as CD36 ligands. Our studies demonstrate that LDL oxidized by copper ions, 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH), or ozone react with the diagnostic amyloid dyes thioflavin T and Congo Red and bind to serum amyloid P component (SAP), a universal constituent of physiological amyloid deposits. X-ray powder diffraction patterns for native LDL show a diffuse powder diffraction ring with maximum intensity corresponding to an atomic spacing of approximately 4.7 A, consistent with the spacing between beta-strands in a beta-sheet. Ozone treatment of LDL generates an additional diffuse powder diffraction ring with maximum intensity indicating a spacing of approximately 9.8 A. This distance is consistent with the presence of cross-beta-structure, a defining characteristic of amyloid. Evidence that these cross-beta-amyloid structures in oxLDL are recognized by macrophages is provided by the observation that SAP strongly inhibits the association and internalization of (125)I-labeled copper-oxidized LDL by peritoneal macrophages. The ability of SAP to bind to amyloid-like structures in oxLDL and prevent lipid uptake by macrophages highlights the potential importance of these structures and suggests an important preventative role for SAP in foam cell formation and early-stage atherosclerosis. 相似文献