首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   4篇
  161篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   12篇
  2015年   3篇
  2014年   6篇
  2013年   11篇
  2012年   13篇
  2011年   15篇
  2010年   6篇
  2009年   5篇
  2008年   11篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有161条查询结果,搜索用时 10 毫秒
11.
Two basic proteins, HLP-1 and HLP-2, were isolated from brewer's barley grain (Hordeum vulgare L.) and characterized as glycoproteins with molecular masses of 16 and 13 kDa and pI values of 7.4 and 8.8, respectively. They could bind sugars, metal ions, and both hydrophobic and hydrophylic molecules of low molecular mass. These characteristics may be related to their potential plant-protecting role.  相似文献   
12.
Although -lactoglobulin (-LG) has been studied extensively for more than 50 years, its physical properties in solution are not yet understood fully in terms of its three-dimensional (3D) structure. For example, despite a recent high-resolution crystal structure, it is still not clear why the two common variants of bovine -LG which differ by just two residues have different aggregation properties during milk processing. We have conducted solution-state NMR studies on a recombinant form of the A variant of -LG at low pH conditions where the protein is partially unfolded and exists as a monomer rather than a dimer. Using a13 C,15N-labelled sample, expressed in Pichia pastoris, we have employed the standard combination of 3D heteronuclear NMR techniques to obtain near complete assignments of proton, carbon and nitrogen resonances. Using a novel pulse sequence we were able to obtain additional assignments, in particular those of methyl groups in residues preceding proline within the sequence. From chemical shifts and on the basis of inter-residue NOEs, we have inferred the secondary structure and topology of monomeric -LG A. It includes eight antiparallel -strands arranged in a barrel, flanked by an -helix, which is typical of a member of the lipocalin family. A detailed comparison with the crystal structure of the dimeric form (for a mixture of A and B variants) at pH 6.5 reveals a close resemblance in both secondary structure and overall topology. Both forms have a ninth -strand which, at the higher pH, forms part of the dimer interface. These studies represent the first full NMR assignment of -LG and will form the basis for a complete characterisation of the solution structure and dynamics of this protein and its variants.  相似文献   
13.
The high mobility group box (HMGB) 1 protein, one of the most abundant nuclear non-histone proteins has been known for its inhibitory effect on repair of DNA damaged by the antitumor drug cisplatin. Here, we report the first results that link HMGB1 to repair of cisplatin-treated DNA at nucleosome level. Experiments were carried out with three types of reconstituted nucleosomes strongly positioned on the damaged DNA: linker DNA containing nucleosomes (centrally and end-positioned) and core particles. The highest repair synthesis was registered with end-positioned nucleosomes, two and three times more efficient than that with centrally positioned nucleosomes and core particles, respectively. HMGB1 inhibited repair of linker DNA containing nucleosomes more efficiently than that of core particles. Just the opposite was the effect of the in vivo acetylated HMGB1: stronger repair inhibition was obtained with core particles. No inhibition was observed with HMGB1 lacking the acidic tail. Binding of HMGB1 proteins to different nucleosomes was also analysed. HMGB1 bound preferentially to damage nucleosomes containing linker DNA, while the binding of the acetylated protein was linker independent. We show that both the repair of cisplatin-damaged nucleosomes and its inhibition by HMGB1 are nucleosome position-dependent events which are accomplished via the acidic tail and modulated by acetylation.  相似文献   
14.
It has been acknowledged that aging exerts detrimental effects on cells of the innate immune system and that neuropeptides, including neuropeptide Y (NPY) and NPY-related peptides fine-tune the activity of these cells through a receptor specific mechanism. The present study investigated the age-dependent potential of peptide YY (PYY) to modulate different granulocyte functions. The PYY reduced the carrageenan-elicited granulocyte accumulation into the air-pouch of aged (24 months) rats, and markedly decreased the phagocytosis of zymosan, as well as the H2O2 production, when applied in vivo (20 μg/air-pouch). The anti-inflammatory effect of PYY was less prominent in adult (8 months) and young (3 months) rats. However, the proportions of granulocytes expressing Y1, Y2 and Y5 receptor subtypes were significantly lower in both aged and young rats when compared to adult rats. Furthermore, the aging was found to be associated with the diminished dipeptidyl peptidase 4 (DP4, an enzyme converting the NPY and PYY to Y2/Y5 receptor selective agonists) activity in plasma. In conclusion, the diverse age-related anti-inflammatory effect of PYY in rats originates from different expression levels of Y1, Y2, and Y5 receptor subtypes in addition to different plasma DP4 activity.  相似文献   
15.
A new evidence on the regulatory function of twitchin, a titin-like protein of molluscan muscles, at muscle contraction has been obtained at studying the movements of IAF-labeled mussel tropomyosin in skeletal ghost fibers during the ATP hydrolysis cycle simulated using nucleotides and non-hydrolysable ATP analogs. For the first time, myosin-induced multistep changes in mobility and in the position of mussel tropomyosin strands on the surface of the thin filament during the ATP hydrolysis cycle have been demonstrated directly. Unphosphorylated twitchin shifts the tropomyosin towards the position typical for muscle relaxation, decreases the tropomyosin affinity to actin and inhibits its movements during the ATPase cycle. Phosphorylation of twitchin by the catalytic subunit of protein kinase A reverses this effect. These data imply that twitchin is a thin filament regulator that controls actin-myosin interaction by “freezing” tropomyosin in the blocked position, resulting in the inhibition of the transformation of weak-binding states into strong-binding ones during ATPase cycle.  相似文献   
16.
Sensitive and accurate RT-qPCR tests are the primary diagnostic tools to identify SARS-CoV-2-infected patients. While many SARS-CoV-2 RT-qPCR tests are available, there are significant differences in test sensitivity, workflow (e.g. hands-on-time), gene targets and other functionalities that users must consider. Several publicly available protocols shared by reference labs and public health authorities provide useful tools for SARS-CoV-2 diagnosis, but many have shortcomings related to sensitivity and laborious workflows. Here, we describe a series of SARS-CoV-2 RT-qPCR tests that are originally based on the protocol targeting regions of the RNA-dependent RNA polymerase (RdRp) and envelope (E) coding genes developed by the Charité Berlin. We redesigned the primers/probes, utilized locked nucleic acid nucleotides, incorporated dual probe technology and conducted extensive optimizations of reaction conditions to enhance the sensitivity and specificity of these tests. By incorporating an RNase P internal control and developing multiplexed assays for distinguishing SARS-CoV-2 and influenza A and B, we streamlined the workflow to provide quicker results and reduced consumable costs. Some of these tests use modified enzymes enabling the formulation of a room temperature-stable master mix and lyophilized positive control, thus increasing the functionality of the test and eliminating cold chain shipping and storage. Moreover, a rapid, RNA extraction-free version enables high sensitivity detection of SARS-CoV-2 in about an hour using minimally invasive, self-collected gargle samples. These RT-qPCR assays can easily be implemented in any diagnostic laboratory and can provide a powerful tool to detect SARS-CoV-2 and the most common seasonal influenzas during the vaccination phase of the pandemic.  相似文献   
17.
It is well documented that neuropeptide Y (NPY) exerts a wide range of biological functions through at least five NPY Y receptor subtypes (Y1-Y5), but its immunological effects only recently came into focus. Using NPY family peptides and NPY-related receptor-specific peptides as well as Y1 and Y2 receptor antagonists, we have tested which NPY Y receptors are involved in NPY-induced modulation of rat peritoneal macrophage function in vitro. NPY and PYY increased oxidative burst in phorbol myristate acetate (PMA)-stimulated macrophages involving activation of protein kinase C (PKC), and decreased it in zymosan-stimulated cells resembling inhibition of signaling pathways subsequent to binding of zymosan particles for the iC3b fragment receptor on macrophages. The combined treatment with NPY and NPY Y receptor antagonists revealed that NPY-induced potentiation of oxidative burst in PMA-stimulated cells is mediated through Y1 and Y2 receptors, while NPY-induced suppression in zymosan-stimulated cells is mediated through Y2 receptors only. NPY-related peptides differently modulated macrophage function, confirming involvement of NPY Y2 receptor in both potentiation and suppression of oxidative burst in these cells. Additionally, it was shown that NPY Y5 receptor mediated suppression of oxidative burst in PMA- and zymosan-stimulated macrophages. Taken together, the present data reveal an NPY Y1 and Y2/Y5 receptor interaction in NPY-induced modulation of macrophage functions related to inflammation.  相似文献   
18.
In eukaryotes, for a protein to be synthesized, the 40 S subunit has to first scan the 5'-UTR of the mRNA until it has encountered the AUG start codon. Several initiation factors that ensure high fidelity of AUG recognition were identified previously, including eIF1A, eIF1, eIF2, and eIF5. In addition, eIF3 was proposed to coordinate their functions in this process as well as to promote their initial binding to 40 S subunits. Here we subjected several previously identified segments of the N-terminal domain (NTD) of the eIF3c/Nip1 subunit, which mediates eIF3 binding to eIF1 and eIF5, to semirandom mutagenesis to investigate the molecular mechanism of eIF3 involvement in these reactions. Three major classes of mutant substitutions or internal deletions were isolated that affect either the assembly of preinitiation complexes (PICs), scanning for AUG, or both. We show that eIF5 binds to the extreme c/Nip1-NTD (residues 1-45) and that impairing this interaction predominantly affects the PIC formation. eIF1 interacts with the region (60-137) that immediately follows, and altering this contact deregulates AUG recognition. Together, our data indicate that binding of eIF1 to the c/Nip1-NTD is equally important for its initial recruitment to PICs and for its proper functioning in selecting the translational start site.  相似文献   
19.
High mobility group box (HMGB)1 protein acts as an architectural element, promoting the assembly of active nucleoprotein complexes due to its ability to bend DNA and to bind preferentially to distorted DNA structures. The behavior of HMGB1 as an "architect" of chromatin defines it as an important factor in many cellular processes such as repair, replication and remodeling. It was shown that the post-synthetic acetylation of HMGB1 at Lys2 modulated its essential properties as a structure-specific nuclear protein. We studied the role of PKC phosphorylation on the "architectural" properties of HMGB1, (i) the effect for the formation of a stable complex with DNA damaged by the anti-tumour drug cis-platinum and (ii) the influence on the ability of HMGB1 protein to bend short DNA fragments. PKC-phosphorylated recombinant HMGB1 increased about an order of magnitude its affinity to cis-platinated DNA, a finding that has already been reported for in vivo acetylated protein. Regarding the effect on the protein's DNA bending ability, it was enhanced upon phosphorylation as demonstrated by the stimulation of DNA circularization. We showed also that PKC phosphorylated the recombinant protein in vitro simultaneously at two target sites. Our results demonstrate that the PKC phosphorylation of HMGB1 has a considerable effect on the fundamental properties of the protein; therefore this post-synthetic modification may serve as a modulator of the HMGB1 participation in different nuclear processes.  相似文献   
20.
Many genes are known to have several promoters. The contribution of alternative promoters to the structural and functional diversity of protein isoforms in eukaryotic cells is considered, including their role in synthesis of identical proteins from different mRNAs, generation of protein isoforms with different and even opposite functions, expression of housekeeping genes, and the variation of the recognition domains of adhesion proteins and receptors. In some cases, alternative promoters allow one gene to produce mRNAs with different open reading frames and, consequently, proteins with no amino acid sequence homology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号