首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   23篇
  2023年   1篇
  2021年   6篇
  2020年   2篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   10篇
  2014年   19篇
  2013年   15篇
  2012年   18篇
  2011年   15篇
  2010年   12篇
  2009年   8篇
  2008年   10篇
  2007年   22篇
  2006年   12篇
  2005年   13篇
  2004年   10篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1974年   1篇
  1973年   3篇
  1969年   1篇
  1965年   1篇
  1923年   1篇
  1892年   1篇
排序方式: 共有247条查询结果,搜索用时 66 毫秒
51.
When a flashed stimulus is followed by a backward mask, subjects fail to perceive it unless the target-mask interval exceeds a threshold duration of about 50 ms. Models of conscious access postulate that this threshold is associated with the time needed to establish sustained activity in recurrent cortical loops, but the brain areas involved and their timing remain debated. We used high-density recordings of event-related potentials (ERPs) and cortical source reconstruction to assess the time course of human brain activity evoked by masked stimuli and to determine neural events during which brain activity correlates with conscious reports. Target-mask stimulus onset asynchrony (SOA) was varied in small steps, allowing us to ask which ERP events show the characteristic nonlinear dependence with SOA seen in subjective and objective reports. The results separate distinct stages in mask-target interactions, indicating that a considerable amount of subliminal processing can occur early on in the occipito-temporal pathway (<250 ms) and pointing to a late (>270 ms) and highly distributed fronto-parieto-temporal activation as a correlate of conscious reportability.  相似文献   
52.
53.
Type I IFNs are induced by pathogens to protect the host from infection and boost the immune response. We have recently demonstrated that this IFN response is not restricted to pathogens, as the Gram-positive bacterium Lactobacillus acidophilus, a natural inhabitant of the intestine, induces high levels of IFN-β in dendritic cells. In the current study, we investigate the intracellular pathways involved in IFN-β upon stimulation of dendritic cells with L. acidophilus and reveal that this IFN-β induction requires phagosomal uptake and processing but bypasses the endosomal receptors TLR7 and TLR9. The IFN-β production is fully dependent on the TIR adapter molecule MyD88, partly dependent on IFN regulatory factor (IRF)1, but independent of the TIR domain-containing adapter inducing IFN-β MyD88 adapter-like, IRF and IRF7. However, our results suggest that IRF3 and IRF7 have complementary roles in IFN-β signaling. The IFN-β production is strongly impaired by inhibitors of spleen tyrosine kinase (Syk) and PI3K. Our results indicate that L. acidophilus induces IFN-β independently of the receptors typically used by bacteria, as it requires MyD88, Syk, and PI3K signaling and phagosomal processing to activate IRF1 and IRF3/IRF7 and thereby the release of IFN-β.  相似文献   
54.
The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role. The SF45-like domain has a helical conformation and is involved in the oligomerization of the protein. The G-patch domain, mainly unstructured on its own as well as in the presence of the SF upstream and RRM downstream domains, is able to bind small RNA oligonucleotides. We also report the structure determination of the RRM domain from the NMR data. It adopts a classical betaalphabetabetaalphabeta topology consisting of a four-stranded beta sheet packed against two alpha helices but does not present the key residues for the RNA interaction. In contrast, our analysis shows that the RRM of TgDRE is not only unable to bind small RNA oligonucleotides but it also shares the protein-protein interaction characteristics with two unusual RRMs of the U2AF heterodimeric splicing factor. The presence of both RNA- and protein-binding domains seems to indicate that TgDRE could also be involved in RNA metabolism.  相似文献   
55.
56.
Pollution of the environment by human and animal faecal pollution affects the safety of shellfish, drinking water and recreational beaches. To pinpoint the origin of contaminations, it is essential to define the differences between human microbiota and that of farm animals. A strategy based on real-time quantitative PCR (qPCR) assays was therefore developed and applied to compare the composition of intestinal microbiota of these two groups. Primers were designed to quantify the 16S rRNA gene from dominant and subdominant bacterial groups. TaqMan® probes were defined for the qPCR technique used for dominant microbiota. Human faecal microbiota was compared with that of farm animals using faecal samples collected from rabbits, goats, horses, pigs, sheep and cows. Three dominant bacterial groups ( Bacteroides/Prevotella, Clostridium coccoides and Bifidobacterium ) of the human microbiota showed differential population levels in animal species. The Clostridium leptum group showed the lowest differences among human and farm animal species. Human subdominant bacterial groups were highly variable in animal species. Partial least squares regression indicated that the human microbiota could be distinguished from all farm animals studied. This culture-independent comparative assessment of the faecal microbiota between humans and farm animals will prove useful in identifying biomarkers of human and animal faecal contaminations that can be applied to microbial source tracking methods.  相似文献   
57.
Towards the human intestinal microbiota phylogenetic core   总被引:2,自引:0,他引:2  
The paradox of a host specificity of the human faecal microbiota otherwise acknowledged as characterized by global functionalities conserved between humans led us to explore the existence of a phylogenetic core. We investigated the presence of a set of bacterial molecular species that would be altogether dominant and prevalent within the faecal microbiota of healthy humans. A total of 10 456 non-chimeric bacterial 16S rRNA sequences were obtained after cloning of PCR-amplified rDNA from 17 human faecal DNA samples. Using alignment or tetranucleotide frequency-based methods, 3180 operational taxonomic units (OTUs) were detected. The 16S rRNA sequences mainly belonged to the phyla Firmicutes (79.4%), Bacteroidetes (16.9%), Actinobacteria (2.5%), Proteobacteria (1%) and Verrumicrobia (0.1%). Interestingly, while most of OTUs appeared individual-specific, 2.1% were present in more than 50% of the samples and accounted for 35.8% of the total sequences. These 66 dominant and prevalent OTUs included members of the genera Faecalibacterium , Ruminococcus , Eubacterium , Dorea , Bacteroides , Alistipes and Bifidobacterium . Furthermore, 24 OTUs had cultured type strains representatives which should be subjected to genome sequence with a high degree of priority. Strikingly, 52 of these 66 OTUs were detected in at least three out of four recently published human faecal microbiota data sets, obtained with very different experimental procedures. A statistical model confirmed these OTUs prevalence. Despite the species richness and a high individual specificity, a limited number of OTUs is shared among individuals and might represent the phylogenetic core of the human intestinal microbiota. Its role in human health deserves further study.  相似文献   
58.
Fourteen ferrocenyl aminohydroxynaphthoquinones, analogues of atovaquone, were synthesized from the hydroxynaphthoquinone core. These novel atovaquone derivatives were tested for their in vitro activity against two apicomplexan parasites of medical importance, Toxoplasma gondii and Plasmodium falciparum, including resistant strains to atovaquone (T. gondii) and chloroquine (P. falciparum). Three of these ferrocenic atovaquone derivatives composed of the hydroxynaphthoquinone core plus an amino-ferrocenic group and an aliphatic chain with 6-8 carbon atoms were found to be significantly active against T. gondii. Moreover, these novel compounds were also effective against the atovaquone-resistant strain of T. gondii (Ato(R)).  相似文献   
59.

Background

Improvements to the outcome of adaptive immune responses could be achieved by inducing specific natural killer (NK) cell subsets which can cooperate with dendritic cells to select efficient T cell responses. We previously reported the induction or reactivation of T cell responses in chronic hepatitis B patients vaccinated with a DNA encoding hepatitis B envelope proteins during a phase I clinical trial.

Methodology/Principal Findings

In this study, we examined changes in the peripheral NK cell populations occurring during this vaccine trial using flow cytometry analysis. Despite a constant number of NK cells in the periphery, a significant increase in the CD56bright population was observed after each vaccination and during the follow up. Among the 13 different NK cell markers studied by flow cytometry analysis, the expression of CD244 and NKG2D increased significantly in the CD56bright NK population. The ex vivo CD107a expression by CD56bright NK cells progressively increased in the vaccinated patients to reach levels that were significantly higher compared to chronically HBV-infected controls. Furthermore, modifications to the percentage of the CD56bright NK cell population were correlated with HBV-specific T cell responses detected by the ELISPOT assay.

Conclusions/Significance

These changes in the CD56bright population may suggest a NK helper effect on T cell adaptive responses. Activation of the innate and adaptive arms of the immune system by DNA immunization may be of particular importance to the efficacy of therapeutic interventions in a context of chronic infections.

Trial Registration

ClinicalTrials.gov NCT00988767  相似文献   
60.
Comparative genomic in situ hybridization (CGH) provides a new possibility for searching genomes for imbalanced genetic material. Labeled genomic test DNA, prepared from clinical or tumor specimens, is mixed with differently labeled control DNA prepared from cells with normal chromosome complements. The mixed probe is used for chromosomal in situ suppression (CISS) hybridization to normal metaphase spreads (CGH-metaphase spreads). Hybridized test and control DNA sequences are detected via different fluorochromes, e.g., fluorescein isothiocyanate (FITC) and tetraethylrhodamine isothiocyanate (TRITC). The ratios of FITC/TRITC fluorescence intensities for each chromosome or chromosome segment should then reflect its relative copy number in the test genome compared with the control genome, e.g., 0.5 for monosomies, 1 for disomies, 1.5 for trisomies, etc. Initially, model experiments were designed to test the accuracy of fluorescence ratio measurements on single chromosomes. DNAs from up to five human chromosome-specific plasmid libraries were labeled with biotin and digoxigenin in different hapten proportions. Probe mixtures were used for CISS hybridization to normal human metaphase spreads and detected with FITC and TRITC. An epifluorescence microscope equipped with a cooled charge coupled device (CCD) camera was used for image acquisition. Procedures for fluorescence ratio measurements were developed on the basis of commercial image analysis software. For hapten ratios 4/1, 1/1 and 1/4, fluorescence ratio values measured for individual chromosomes could be used as a single reliable parameter for chromosome identification. Our findings indicate (1) a tight correlation of fluorescence ratio values with hapten ratios, and (2) the potential of fluorescence ratio measurements for multiple color chromosome painting. Subsequently, genomic test DNAs, prepared from a patient with Down syndrome, from blood of a patient with Tcell prolymphocytic leukemia, and from cultured cells of a renal papillary carcinoma cell line, were applied in CGH experiments. As expected, significant differences in the fluorescence ratios could be measured for chromosome types present in different copy numbers in these test genomes, including a trisomy of chromosome 21, the smallest autosome of the human complement. In addition, chromosome material involved in partial gains and losses of the different tumors could be mapped to their normal chromosome counterparts in CGH-metaphase spreads. An alternative and simpler evaluation procedure based on visual inspection of CCD images of CGH-metaphase spreads also yielded consistent results from several independent observers. Pitfalls, methodological improvements, and potential applications of CGH analyses are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号