首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2275篇
  免费   205篇
  国内免费   2篇
  2023年   6篇
  2022年   13篇
  2021年   30篇
  2020年   24篇
  2019年   17篇
  2018年   39篇
  2017年   34篇
  2016年   59篇
  2015年   106篇
  2014年   128篇
  2013年   130篇
  2012年   172篇
  2011年   154篇
  2010年   104篇
  2009年   102篇
  2008年   142篇
  2007年   150篇
  2006年   172篇
  2005年   144篇
  2004年   114篇
  2003年   123篇
  2002年   136篇
  2001年   23篇
  2000年   18篇
  1999年   22篇
  1998年   33篇
  1997年   20篇
  1996年   29篇
  1995年   23篇
  1994年   31篇
  1993年   18篇
  1992年   25篇
  1991年   14篇
  1990年   11篇
  1989年   17篇
  1988年   12篇
  1987年   7篇
  1986年   6篇
  1985年   13篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   7篇
  1978年   4篇
  1976年   9篇
  1975年   3篇
  1972年   3篇
  1971年   3篇
  1965年   2篇
  1951年   2篇
排序方式: 共有2482条查询结果,搜索用时 15 毫秒
941.
Genomic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in acute lymphoblastic leukemia (ALL), suggesting new opportunities for therapeutic interventions. In this study, we identified G9a/EHMT2 as a potential target in T-ALL through the intersection of epigenome-centered shRNA and chemical screens. We subsequently validated G9a with low-throughput CRISPR-Cas9-based studies targeting the catalytic G9a SET-domain and the testing of G9a chemical inhibitors in vitro, 3D, and in vivo T-ALL models. Mechanistically we determined that G9a repression promotes lysosomal biogenesis and autophagic degradation associated with the suppression of sestrin2 (SESN2) and inhibition of glycogen synthase kinase-3 (GSK-3), suggesting that in T-ALL glycolytic dependent pathways are at least in part under epigenetic control. Thus, targeting G9a represents a strategy to exhaust the metabolic requirement of T-ALL cells.Subject terms: Translational research, Cancer metabolism, Acute lymphocytic leukaemia  相似文献   
942.
Adipocytokines are mainly adipocyte-derived cytokines regulating metabolism and as such are key regulators of insulin resistance. Some adipocytokines such as adiponectin and leptin affect immune and inflammatory functions. Visfatin (pre-B cell colony-enhancing factor) has recently been identified as a new adipocytokine affecting insulin resistance by binding to the insulin receptor. In this study, we show that recombinant visfatin activates human leukocytes and induces cytokine production. In CD14(+) monocytes, visfatin induces the production of IL-1beta, TNF-alpha, and especially IL-6. Moreover, it increases the surface expression of costimulatory molecules CD54, CD40, and CD80. Visfatin-stimulated monocytes show augmented FITC-dextran uptake and an enhanced capacity to induce alloproliferative responses in human lymphocytes. Visfatin-induced effects involve p38 as well as MEK1 pathways as determined by inhibition with MAPK inhibitors and we observed activation of NF-kappaB. In vivo, visfatin induces circulating IL-6 in BALB/c mice. In patients with inflammatory bowel disease, plasma levels of visfatin are elevated and its mRNA expression is significantly increased in colonic tissue of Crohn's and ulcerative colitis patients compared with healthy controls. Macrophages, dendritic cells, and colonic epithelial cells might be additional sources of visfatin as determined by confocal microscopy. Visfatin can be considered a new proinflammatory adipocytokine.  相似文献   
943.
Survival and biocontrol activity of Clonostachys rosea (isolate IK726) conidia during storage on barley seeds were investigated. The initial density of colony forming conidia on seed was 4 &#50 10 3 to 9 &#50 10 4 colony forming units (cfu)/seed. After 5 months storage at 4°C, the density decreased by less than one order of magnitude and the biocontrol efficacy against seedling blight caused by seed-borne Bipolaris sorokiniana was maintained at a significantly high level ( > 80% disease reduction) for > 5 months. Conidial survival on seeds stored at 20°C declined more rapidly than at 4°C, and biocontrol efficacy was significantly reduced after 3-5 months. However, conidia produced on solid media over 20 days survived better than conidia produced in liquid culture and conidia from solid media produced over 12 days. In contrast, when seeds treated with conidia were packed with silica gel and stored at 20°C, the cfu density decreased by less than one order of magnitude after 5 months and the biocontrol efficacy was still high after 6 months. A dose-response curve revealed that 103 cfu/seed were needed for 80% control of seedling blight. Similar control was obtained in storage experiments when approximately 103 cfu/seed were recovered from seed, indicating that conidia which survived also retained a high ability to control disease.  相似文献   
944.
Clonostachys rosea is a well-known biocontrol agent against Botrytis cinerea, the causal agent of gray mold in strawberry. The activity of cell wall-degrading enzymes might play a significant role for successful biocontrol by C. rosea. The expression pattern of four chitinases, and two endoglucanase genes from C. rosea strain IK726 was analyzed using real-time RT-PCR in vitro and in strawberry leaves during interaction with B. cinerea. Specific primers were designed for beta-tubulin genes from C. rosea and B. cinerea, respectively, and a gene encoding a DNA-binding protein (DBP) from strawberry, allowing in situ activity assessment of each fungus in vitro and during their interaction on strawberry leaves. Growth of B. cinerea was inhibited in all pathogen-antagonist interactions while the activity of IK726 was slightly increased. In all in vitro interactions, four of the six genes were upregulated while no change in expression of two endochitinases was measured. In strawberry leaves, the chitinase genes were upregulated 2-12-fold, except one of the endochitinases, whereas no change in expression of the two endoglucanases was measured. The results suggest that three out of four chitinase genes of IK726 are involved in biocontrol on leaves. This is the first example of monitoring of expression of chitinolytic genes in interactions between biocontrol agents and pathogens in plant material.  相似文献   
945.
946.
 Solitary revertants which have been observed on single mutant tree individuals have up to now been believed to be grow-through cells belonging to the rootstock on which they are commonly grafted. In this study three different phenotypically visible mutants revealing revertant shoots on the same tree were chosen for genetic analysis. The mutant Quercus robur L. ‘argenteomarginata’ was grafted on a normal rootstock, an individual of Carpinus betulus L. var. quercifolia Desf. as well as an individual of Picea glauca (Moench) Voss. ‘conica’ are supposed to have grown from seeds. By means of a highly specific M13 PCR fingerprinting technique the mutant and revertant tissues were analysed in comparison to different individuals of each of the species. With the grafted mutant, cambium tissue of the rootstock was also investigated. Whereas conspecific individuals could be clearly distinguished from each other, mutant and revertant tissues revealed the same banding patterns for each of the three trees. In case of the grafted mutant, the fingerprint obtained from cambium tissue of the rootstock was clearly different from the pattern of mutant and revertant tissue. Results demonstrate the potential of the tool for genetic differentiation between individuals of three tree species hence in the case of the grafted mutant, the hypothesis that the observed reversion is caused by a grow-through of the rootstock is rejected. Furthermore, identical fingerprints of mutant and revertant tissue support identical genetic background of the tissues excluding the gene(s) responsible of the mutation. Possible causes of mutations and reversions regarding the three mutant trees are discussed. Received: 15 September 1997 / Accepted: 24 November 1997  相似文献   
947.
Soil warming alters microbial substrate use in alpine soils   总被引:2,自引:0,他引:2  
Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C‐rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007–2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted 13CO213C = ?30‰, 2001–2009). We traced this depleted 13C label in phospholipid fatty acids (PLFA) of the organic layer (0–5 cm soil depth) and in C mineralized from root‐free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 (‘old’), from 2001 to 2009 (‘new’) or in 2010 (‘recent’). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root‐free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem.  相似文献   
948.
Rabe B  Glebe D  Kann M 《Journal of virology》2006,80(11):5465-5473
The hepatitis B virus (HBV) is an enveloped DNA virus which is highly infectious in vivo. In vitro, only primary hepatocytes of humans and Tupaia belangeri or the novel HepaRG cell line are susceptible to HBV, but infection is inefficient and study of early infection events in single cells is unsatisfactory. Since hepatoma cells replicate the virus efficiently after transfection, this limited infection efficiency must be related to the initial entry phase. Here, we describe the lipid-based delivery of HBV capsids into nonsusceptible cells, circumventing the natural entry pathway. Successful infection was monitored by observing the emergence of the nuclear viral covalently closed circular DNA and the production of progeny virus and subviral particles. Lipid-mediated transfer initiated productive infection that was at least 100-fold more effective than infection of permissive cell cultures. High-dose capsid transfer showed that the uptake was not receptor limited and allowed the intracellular transport of capsids and genomes to be examined microscopically. The addition of inhibitors confirmed an entry pathway by fusion of the lipid with the plasma membrane. By indirect immune fluorescence and native fluorescence in situ hybridization, we followed the pathway of capsids and viral genomes in individual cells. We observed an active microtubule-dependent capsid transfer to the nucleus and a subsequent release of the viral genomes exclusively into the karyoplasm. Lipid-mediated transfer of viral capsids thus appears to allow efficient introduction of genetic information into target cells, facilitating studies of early infection events which are otherwise impeded by the small number of viruses entering the cell.  相似文献   
949.
The lignin structure and enzyme activities of normal and brown-midrib (BMR-6) mutant lines of Sorghum bicolor have been compared to identify the enzyme(s) involved in the reduction of the lignin content of the mutant. The results indicate that cinnamyl-alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase are depressed in the BMR-6 line, whereas the structural modifications correspond only to a reduction of CAD activity. Apparently, the change in the Sorghum lignin content, caused by depression of CAD activity, is accompanied by the incorporation of cinnamaldehydes into the core lignin.Abbreviations CAD cinnamyl-alcohol dehydrogenase - HPLC high-performance liquid chromatography - m/z mass number - OMT caffeic acid O-methyltransferase  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号