首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   14篇
  2021年   2篇
  2019年   2篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2000年   5篇
  1999年   8篇
  1998年   9篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   2篇
  1963年   2篇
  1962年   1篇
  1960年   1篇
  1959年   1篇
  1944年   1篇
  1939年   1篇
  1937年   2篇
  1934年   1篇
排序方式: 共有152条查询结果,搜索用时 0 毫秒
21.
22.
Aim We investigated the spatial variation of rainforest tree community structure and composition to determine if forest structure and diversity varied as a function of topography; and in turn if this could influence patterns of habitat use by native forest birds and pteropodid bats. Location The study was undertaken on the island of Tutuila, American Samoa, located in the South Pacific Ocean. Methods All trees ≥10 cm diameter were censused in sixty 200 m2 plots in ridge, slope and valley forest across the island of Tutuila. Results Forest structure varied significantly across topographical space. Ridge forest was shortest and had the highest stem densities, and valley forest was tallest with the fewest stems per unit area. Species richness was highest on ridges, and slope and valley forest were more similar in composition with each other than they were with ridge forest. Of the fifty-two tree species encountered in the plots, nine showed a statistical affiliation to one of the three topographical positions. Main conclusions We explain patterns of forest structure and diversity in the context of chronic and catastrophic disturbances. Higher stem densities in ridge forest suggested a higher degree of disturbance on ridges, and this was supported by the fact that the height/diameter ratio of the forest was lowest on ridges, which indicated wind-cropping. We hypothesize the potential effects of topographical variation and known phenological patterns on wildlife abundances. We predict that flowering episodes of ridge-affiliated, bird-visited species (particularly Syzygium inophylloides (A. Gray) C. Muell.; Myrtaceae) will concentrate honeyeater densities on ridges, and that fruiting of the tree Canarium vitiense A. Gray (Burseraceae) could localize populations of the Pacific pigeon (Ducula pacifica). Overall (i.e. net) bat foraging patterns are unlikely to be affected by either flowering or fruiting events. Most of the tree species on Tutuila are generalist in their demographic patterns, and the island is depauperate in wildlife fauna; the evolutionary and conservation implications are discussed. We conclude with the argument that conservation of vertebrate species is essential to maintain the current generalist demographic patterns of Samoan trees.  相似文献   
23.
BACKGROUND: The third hypervariable (V3) loop of HIV-1 gp120 has been termed the principal neutralizing determinant (PND) of the virus and is involved in many aspects of virus infectivity. The V3 loop is required for viral entry into the cell via membrane fusion and is believed to interact with cell surface chemokine receptors on T cells and macrophages. Sequence changes in V3 can affect chemokine receptor usage, and can, therefore, modulate which types of cells are infected. Antibodies raised against peptides with V3 sequences can neutralize laboratory-adapted strains of the virus and inhibit syncytia formation. Fab fragments of these neutralizing antibodies in complex with V3 loop peptides have been studied by X-ray crystallography to determine the conformation of the V3 loop. RESULTS: We have determined three crystal structures of Fab 58.2, a broadly neutralizing antibody, in complex with one linear and two cyclic peptides the amino acid sequence of which comes from the MN isolate of the gp120 V3 loop. Although the peptide conformations are very similar for the linear and cyclic forms, they differ from that seen for the identical peptide bound to a different broadly neutralizing antibody, Fab 59.1, and for a similar peptide bound to the MN-specific Fab 50.1. The conformational difference in the peptide is localized around residues Gly-Pro-Gly-Arg, which are highly conserved in different HIV-1 isolates and are predicted to adopt a type II beta turn. CONCLUSIONS: The V3 loop can adopt at least two different conformations for the highly conserved Gly-Pro-Gly-Arg sequence at the tip of the loop. Thus, the HIV-1 V3 loop has some inherent conformational flexibility that may relate to its biological function.  相似文献   
24.
Antibody Z13e1 is a relatively broadly neutralizing anti-human immunodeficiency virus type 1 antibody that recognizes the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Based on the crystal structure of an MPER epitope peptide in complex with Z13e1 Fab, we identified an unrelated protein, interleukin (IL)-22, with a surface-exposed region that is structurally homologous in its backbone to the gp41 Z13e1 epitope. By grafting the gp41 Z13e1 epitope sequence onto the structurally homologous region in IL-22, we engineered a novel protein (Z13-IL22-2) that contains the MPER epitope sequence for use as a potential immunogen and as a reagent for the detection of Z13e1-like antibodies. The Z13-IL22-2 protein binds Fab Z13e1 with a Kd of 73 nM. The crystal structure of Z13-IL22-2 in complex with Fab Z13e1 shows that the epitope region is faithfully replicated in the Fab-bound scaffold protein; however, isothermal calorimetry studies indicate that Fab binding to Z13-IL22-2 is not a lock-and-key event, leaving open the question of whether conformational changes upon binding occur in the Fab, in Z13-IL-22, or in both.  相似文献   
25.
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   
26.
Herpes Simplex Virus type-1 (HSV-1) and type-2 (HSV-2) establish life-long infections and cause significant orofacial and genital infections in humans. HSV-1 is the leading cause of infectious blindness in the western world. Currently, there are no available vaccines to protect against herpes simplex infections. Recently, we showed that a single intramuscular immunization with an HSV-1(F) mutant virus lacking expression of the viral glycoprotein K (gK), which prevents the virus from entering into distal axons of ganglionic neurons, conferred significant protection against either virulent HSV-1(McKrae) or HSV-2(G) intravaginal challenge in mice. Specifically, 90% of the mice were protected against HSV-1(McKrae) challenge, while 70% of the mice were protected against HSV-2(G) challenge. We constructed the recombinant virus VC2 that contains specific mutations in gK and the membrane protein UL20 preventing virus entry into axonal compartments of neurons, while allowing efficient replication in cell culture, unlike the gK-null virus, which has a major defect in virus replication and spread. Intramuscular injection of mice with 107 VC2 plaque forming units did not cause any significant clinical disease in mice. A single intramuscular immunization with the VC2 virus protected 100% of mice against lethal intravaginal challenge with either HSV-1(McKrae) or HSV-2(G) viruses. Importantly, vaccination with VC2 produced robust cross protective humoral and cellular immunity that fully protected vaccinated mice against lethal disease. Quantitative PCR did not detect any viral DNA in ganglionic tissues of vaccinated mice, while unvaccinated mice contained high levels of viral DNA. The VC2 virus may serve as an efficient vaccine against both HSV-1 and HSV-2 infections, as well as a safe vector for the production of vaccines against other viral and bacterial pathogens.  相似文献   
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号