首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   14篇
  152篇
  2021年   2篇
  2019年   2篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2000年   5篇
  1999年   8篇
  1998年   9篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   2篇
  1963年   2篇
  1962年   1篇
  1960年   1篇
  1959年   1篇
  1944年   1篇
  1939年   1篇
  1937年   2篇
  1934年   1篇
排序方式: 共有152条查询结果,搜索用时 0 毫秒
1.

Background  

Populations of the Oriental White-backed Vulture (Gyps bengalensis) have declined by over 95% within the past decade. This decline is largely due to incidental consumption of the non-steroidal anti-inflammatory veterinary pharmaceutical diclofenac, commonly used to treat domestic livestock. The conservation status of other Gyps vultures in southern Asia is also of immediate concern, given the lack of knowledge regarding status of their populations and the continuing existence of taxonomic uncertainties. In this study, we assess phylogenetic relationships for all recognized species and the majority of subspecies within the genus Gyps. The continuing veterinary use of diclofenac is an unknown but potential risk to related species with similar feeding habits to Gyps bengalensis. Therefore, an accurate assessment of the phylogenetic relationships among Gyps vultures should aid in their conservation by clarifying taxonomic uncertainties, and enabling inference of their respective relatedness to susceptible G. bengalensis.  相似文献   
2.
3.
447-52D is a human monoclonal antibody isolated from a heterohybridoma derived from an HIV-1-infected individual. This antibody recognizes the hypervariable gp120 V3 loop, and neutralizes both X4 and R5 primary isolates, making it one of the most effective anti-V3 antibodies characterized to date. The crystal structure of the 447-52D Fab in complex with a 16-mer V3 peptide at 2.5 A resolution reveals that the peptide beta hairpin forms a three-stranded mixed beta sheet with complementarity determining region (CDR) H3, with most of the V3 side chains exposed to solvent. Sequence specificity is conferred through interaction of the type-II turn (residues GPGR) at the apex of the V3 hairpin with the base of CDR H3. This novel mode of peptide-antibody recognition enables the antibody to bind to many different V3 sequences where only the GPxR core epitope is absolutely required.  相似文献   
4.
Non-invasive detection of prostate cancer or metastases still remains a challenge in the field of molecular imaging. In our recent work of screening arginine- or lysine-rich peptides for intracellular delivery of a therapeutic agent into prostate cancer cells, an arginine-rich cell permeable peptide (NH2GR11) was found with an unexpectedly preferential uptake in prostate cancer cell lines. The goal of this work was to develop this peptide as a positron emission tomography (PET) imaging probe for specific detection of distant prostate cancer metastases. The optimal length of arginine-rich peptides was evaluated by the cell uptake efficiency of three fluorescein isothiocyanate (FITC)-tagged oligoarginines (NHGR9, NHGR11, and NHGR13) in four human prostate cell lines (LNCaP, PZ-HPV-7, DU145, and PC3). Of the three oligoarginines, NH2GR11 showed the highest cell uptake and internalization efficiency with its subcellular localization in cytosol. The biodistribution of FITC-NHGR9, FITC-NHGR11, and FITC-NHGR13 performed in control nude mice displayed the unique preferential accumulation of FITC-NHGR11 in the prostate tissue. Further in vivo evaluation of FITC-NHGR11 in PC3 tumor-bearing nude mice revealed elevated uptake of this peptide in tumors as compared to other organs. In vivo pharmacokinetics evaluated with 64Cu-labeled NH2GR11 showed that the peptide was rapidly cleared from the blood (t 1/2 = 10.7 min) and its elimination half-life was 17.2 h. The PET imaging specificity of 64Cu-labled NH2GR11 was demonstrated for the detection of prostate cancer in a comparative imaging experiment using two different human cancer xenograft models.  相似文献   
5.
6.
Antibody Z13e1 is a relatively broadly neutralizing anti-human immunodeficiency virus type 1 antibody that recognizes the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Based on the crystal structure of an MPER epitope peptide in complex with Z13e1 Fab, we identified an unrelated protein, interleukin (IL)-22, with a surface-exposed region that is structurally homologous in its backbone to the gp41 Z13e1 epitope. By grafting the gp41 Z13e1 epitope sequence onto the structurally homologous region in IL-22, we engineered a novel protein (Z13-IL22-2) that contains the MPER epitope sequence for use as a potential immunogen and as a reagent for the detection of Z13e1-like antibodies. The Z13-IL22-2 protein binds Fab Z13e1 with a Kd of 73 nM. The crystal structure of Z13-IL22-2 in complex with Fab Z13e1 shows that the epitope region is faithfully replicated in the Fab-bound scaffold protein; however, isothermal calorimetry studies indicate that Fab binding to Z13-IL22-2 is not a lock-and-key event, leaving open the question of whether conformational changes upon binding occur in the Fab, in Z13-IL-22, or in both.  相似文献   
7.
Arginine decarboxylase (ADC) is an important enzyme in the production of putrescine and polyamines in plants. It is encoded by a single or low-copy nuclear gene that lacks introns in sequences studied to date. The rate of Adc amino acid sequence evolution is similar to that of ndhF for the angiosperm family studied. Highly conserved regions provide several target sites for PCR priming and sequencing and aid in nucleotide and amino acid sequence alignment across a range of taxonomic levels, while a variable region provides an increased number of potentially informative characters relative to ndhF for the taxa surveyed. The utility of the Adc gene in plant molecular systematic studies is demonstrated by analysis of its partial nucleotide sequences obtained from 13 representatives of Brassicaceae and 3 outgroup taxa, 2 from the mustard oil clade (order Capparales) and 1 from the related order Malvales. Two copies of the Adc gene, Adc1 and Adc2, are found in all members of the Brassicaceae studied to data except the basal genus Aethionema. The resulting Adc gene tree provides robust phylogenetic data regarding relationships within the complex mustard family, as well as independent support for proposed tribal realignments based on other molecular data sets such as those from chloroplast DNA.   相似文献   
8.
alpha 1-Proteinase inhibitor (alpha 1-PI), a member of the serine proteinase inhibitor superfamily, has a primary role in controlling neutrophil elastase activity within the mammalian circulation. Several studies have indicated that the reactive center region of alpha 1-PI, the amino acid sequence of which is critical to recognition of and binding to target proteinases, is highly divergent within and among species. This appears to be a consequence of accelerated rates of evolution that may have been driven by positive Darwinian selection. In order to examine this and other features of alpha 1-PI evolution in more detail, we have isolated and sequenced cDNAs representing alpha 1- PI mRNAs of the mouse species Mus saxicola and Mus minutoides and have compared these with a number of other mammalian alpha 1-PI mRNAs. Relative to other mammalian mRNAs, the extent of nonsynonymous substitution is generally high throughout the alpha 1-PI mRNA molecule, indicating greater overall rates of amino acid substitution. Within and among mouse species, the 5'-half of the mRNA, but not the 3'-half, has been homogenized by concerted evolution. Finally, the reactive center is under diversifying or positive Darwinian selection in murid rodents (rats, mice) and guinea pigs yet is under purifying selection in primates and artiodactyls. The significance of these findings to alpha 1-PI function and the possible selective forces driving evolution of serpins in general are discussed.   相似文献   
9.
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   
10.
2G12 is a broadly neutralizing anti-HIV-1 monoclonal human IgG1 antibody reactive with a high-mannose glycan cluster on the surface of glycoprotein gp120. A key feature of this very highly mutated antibody is domain exchange of the heavy-chain variable region (VH) with the VH of the adjacent Fab of the same immunoglobulin, which assembles a multivalent binding interface composed of two primary binding sites in close proximity. A non-germ line-encoded proline in the elbow between VH and CH1 and an extensive network of hydrophobic interactions in the VH/VH′ interface have been proposed to be crucial for domain exchange. To investigate the origins of domain exchange, a germ line version of 2G12 that behaves as a conventional antibody was engineered. Substitution of 5 to 7 residues for those of the wild type produced a significant fraction of domain-exchanged molecules, with no evidence of equilibrium between domain-exchanged and conventional forms. Two substitutions not previously implicated, AH14 and EH75, are the most crucial for domain exchange, together with IH19 at the VH/VH′ interface and PH113 in the elbow region. Structural modeling gave clues as to why these residues are essential for domain exchange. The demonstration that domain exchange can be initiated by a small number of substitutions in a germ line antibody suggests that the evolution of a domain-exchanged antibody response in vivo may be more readily achieved than considered to date.Protein oligomers are able to exchange or swap an element of their secondary structure or an entire protein domain. The functional unit in domain-exchanged proteins thereby stays preserved, as only the linking hinge loop changes conformation significantly (4, 17, 27). Analogous to other domain-swapped proteins, antibodies can exchange an entire domain, in this case the heavy-chain variable region (VH), with an equivalent heavy-chain variable region of an adjacent Fab (VH′) within the same immunoglobulin (Ig) molecule (11). The advantages of domain-exchanged proteins, including antibodies, are higher local concentrations of active sites, a larger binding surface, and a potential secondary active site at the new subunit interface (27, 45). The one and only antibody shown to be domain exchanged to date is 2G12 (7, 11), but this arrangement is potentially possible for any Ig and could have been overlooked at least in some instances.2G12 is one of only a few high-affinity monoclonal antibodies with broad neutralizing activity against different subtypes of HIV-1 (5, 30, 40, 43). The antibody binds a dense cluster of N-linked high-mannose glycans (Man8-9GlcNAc2) on the envelope surface glycoprotein gp120 (10, 35, 36, 41). The domain-exchanged arrangement forms a multivalent binding site composed of two primary binding sites in close proximity and a proposed secondary binding site formed by the novel VH/VH′ interface (11). 2G12 provides protection against infection in animal models (19, 31) and has been shown to induce neutralization escape following passive immunization in humans (39).Consensus has grown that a successful HIV-1 vaccine will need to include a component that elicits broadly neutralizing antibodies (8, 18, 21, 26, 32, 42). All attempts to elicit 2G12-like antibodies with the desired specificity and neutralization activity have failed to date (22, 29, 44), conceivably due to difficulties in generating adequate mimicry of the glycan cluster and tolerance mechanisms or, very likely, the inability to induce domain exchange (1). Unraveling the mechanism of domain exchange and how this conformation might have evolved is highly desirable to direct future HIV-1 vaccine design to elicit 2G12-like antibodies.By comparison with other domain-exchanged proteins (27), the following three mechanisms have been proposed to contribute to the unique structure of 2G12 compared to the structure of a conventional antibody: destabilization of the “closed” VH/VL interface, conformational change in the elbow between VH and CH1, and an energetically favorable “open” VH/VH′ interface (11). Key residues involved in promoting domain exchange were predicted based on examination of interacting residues at the two interfaces and by the effects of alanine substitutions on the binding of wild-type 2G12 to gp120. However, the importance of these key residues for domain exchange was not directly demonstrated experimentally (11).Here, we explored the minimal requirements for domain exchange of 2G12, starting with a germ line version of the antibody that adopts a conventional antibody structure. Although wild-type 2G12 is heavily somatically mutated, only five to seven substitutions in the germ line version of the antibody were shown to produce a significant fraction of domain-exchanged molecules. The results suggest the evolution of domain-exchanged antibody responses may be more facile than considered to date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号