首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   11篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   4篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   9篇
  2007年   7篇
  2006年   11篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1963年   1篇
  1955年   1篇
  1937年   1篇
  1915年   1篇
排序方式: 共有124条查询结果,搜索用时 31 毫秒
31.
32.
Plant type ferredoxin (Fd) is a small [2Fe-2S] cluster containing electron-transfer protein with a highly negative redox potential. Higher plants contain different iso-protein types of Fd in roots and leaves, reflecting the difference in redox cascades between these two tissues. We have combined subdomains of leaf and root Fds in recombinant chimeras, to examine structural effects and the relationship between groups of residues on redox potential, electron transfer, and protein-protein interactions. All chimeras had redox potentials that were intermediate to the wild type leaf and root Fds. Surprisingly, the largest differences resulted from exchange of the N-terminus, the region farthest from the redox center. Homology modeling and energy minimization calculations suggest that the N-terminal chimeras may indirectly influence redox potentials by structurally perturbing the active site. Measurements of electron transport and protein interaction indicate that synergistic interaction between the C- and N-terminal of root Fd bestows a specific high affinity for accepting electrons in the root type electron cascade, and that there is discrimination against photosynthetic electron donation to root Fd based on the C-terminus of the molecule. Taken together, the experimental and computational studies support a model in which higher order structure contributes to iso-protein specific interaction and electron-transfer properties.  相似文献   
33.
34.
Systematic Monte Carlo simulations of simple lattice models show that the final stage of protein folding is an ordered process where native contacts get locked (i.e., the residues come into contact and remain in contact for the duration of the folding process) in a well‐defined order. The detailed study of the folding dynamics of protein‐like sequences designed as to exhibit different contact energy distributions, as well as different degrees of sequence optimization (i.e., participation of non‐native interactions in the folding process), reveals significant differences in the corresponding locking scenarios—the collection of native contacts and their average locking times, which are largely ascribable to the dynamics of non‐native contacts. Furthermore, strong evidence for a positive role played by non‐native contacts at an early folding stage was also found. Interestingly, for topologically simple target structures, a positive interplay between native and non‐native contacts is observed also toward the end of the folding process, suggesting that non‐native contacts may indeed affect the overall folding process. For target models exhibiting clear two‐state kinetics, the relation between the nucleation mechanism of folding and the locking scenario is investigated. Our results suggest that the stabilization of the folding transition state can be achieved through the establishment of a very small network of native contacts that are the first to lock during the folding process.  相似文献   
35.
36.
Metabolic syndrome is associated with insulin resistance and atherosclerosis. Here, we show that deficiency of one or two alleles of ATM, the protein mutated in the cancer-prone disease ataxia telangiectasia, worsens features of the metabolic syndrome, increases insulin resistance, and accelerates atherosclerosis in apoE-/- mice. Transplantation with ATM-/- as compared to ATM+/+ bone marrow increased vascular disease. Jun N-terminal kinase (JNK) activity was increased in ATM-deficient cells. Treatment of ATM+/+apoE-/- mice with low-dose chloroquine, an ATM activator, decreased atherosclerosis. In an ATM-dependent manner, chloroquine decreased macrophage JNK activity, decreased macrophage lipoprotein lipase activity (a proatherogenic consequence of JNK activation), decreased blood pressure, and improved glucose tolerance. Chloroquine also improved metabolic abnormalities in ob/ob and db/db mice. These results suggest that ATM-dependent stress pathways mediate susceptibility to the metabolic syndrome and that chloroquine or related agents promoting ATM activity could modulate insulin resistance and decrease vascular disease.  相似文献   
37.

Background  

The statistical modeling of biomedical corpora could yield integrated, coarse-to-fine views of biological phenomena that complement discoveries made from analysis of molecular sequence and profiling data. Here, the potential of such modeling is demonstrated by examining the 5,225 free-text items in the Caenorhabditis Genetic Center (CGC) Bibliography using techniques from statistical information retrieval. Items in the CGC biomedical text corpus were modeled using the Latent Dirichlet Allocation (LDA) model. LDA is a hierarchical Bayesian model which represents a document as a random mixture over latent topics; each topic is characterized by a distribution over words.  相似文献   
38.

Background  

The shape of phylogenetic trees has been used to make inferences about the evolutionary process by comparing the shapes of actual phylogenies with those expected under simple models of the speciation process. Previous studies have focused on speciation events, but gene duplication is another lineage splitting event, analogous to speciation, and gene loss or deletion is analogous to extinction. Measures of the shape of gene family phylogenies can thus be used to investigate the processes of gene duplication and loss. We make the first systematic attempt to use tree shape to study gene duplication using human gene phylogenies.  相似文献   
39.
Standley DM  Toh H  Nakamura H 《Proteins》2004,57(2):381-391
A new algorithm for superimposing protein structures based on maximizing the number of spatially equivalent residues is introduced. The algorithm works in three distinct steps. First, the optimal residue map is calculated by structural alignment. By default, the double dynamic programming algorithm, as implemented in the program ASH, was used for the structure alignment step, but we also present results based on alignments imported from three other programs (Dali, CE, and VAST).Second, the structures are spatially superimposed such that the effective number of equivalent residues (NER)--aligned residue pairs that can be spatially overlapped--is maximized. The NER score is an analytic, differentiable similarity function that rewards spatially equivalent residues but ignores non-equivalent ones. Maximization of the NER score results in accurate superpositions in cases where root mean square deviation (RMSD) minimization fails. Third, the NER function is used in conjunction with traditional dynamic programming to realign the structures based on the proximity of residues in the superposition. Results are presented for a wide range of superposition problems and compared to results from Dali, CE, and VAST. In addition, several structure-structure pairs that show only partial similarity are discussed, and results are compared to those from the LGA, SARF2, and ThreeCa programs.  相似文献   
40.
The community effect is an interaction among a group of many nearby cells that is necessary for them to maintain tissue-specific gene expression and differentiate co-ordinately. A community interaction is required for the muscle precursor cells of the Xenopus embryo to develop into terminally differentiated muscle, but exactly when and where the community effect acts during myogenesis has not been determined. Here, we ask whether dependence on the community effect varies with the developmental age of the muscle precursor cells. We find that dependence on the community signal changes with time through the muscle precursor cell population. During neurulation muscle precursor cells that are still in the vicinity of the blastopore and that are fated to form posterior muscle continue to require interactions with their neighbours, while differentiation of the anterior paraxial mesoderm,which gastrulated earlier, is independent of cell contact at this time. Thus the time during which a particular sub-population of muscle precursor cells requires a community interaction is related to their final destination along the anterior-posterior axis. In addition we show that this later acting community interaction around the blastopore involves FGF signalling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号