首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2012年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1958年   4篇
  1954年   1篇
  1953年   2篇
  1899年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
51.
Studies of locomotor performance have contributed to the elucidation of how suborganismal traits ultimately relate to fitness. In terrestrial populations, exploring the physiological and environmental contributions to whole-animal performance measures has improved our understanding of phenotypic selection. Conversely, very little is known about the links between phenotypic selection and swimming abilities in fish. Most research on swimming performance in fish has focused on morphological, physiological, and biochemical traits contributing to performance or has used swimming performance as a measure of environmental suitability. Few studies have explored how swimming performance is integrated with life-history traits or contributes to Darwinian fitness. In addition, while there are many studies on how the environment influences the swimming performance of fish, few have been done at the individual level. The objective of this study was to broaden our understanding of the relevance of fish swimming performance studies by testing the hypothesis that swimming performance (endurance and sprint) is ontogenetically and temporally stable across fluctuating environmental conditions. We found that individual sprint performances recorded at 12 degrees C were significantly repeatable after a 4-wk acclimation to 22 degrees C, although relative sprint performance of fish that survived 6 mo of natural conditions in a mesocosm was not significantly repeatable. Endurance swimming performance, as measured by critical swimming speed (U(crit)) before and after the 6-mo exposure to simulated natural conditions, was significantly repeatable within survivors. Relative sprint and critical swimming performances were not significantly related to each other. We concluded that within a time frame of up to 6 mo, the swimming performances of individual bass are ontogenetically nearly stable (sprint) to stable (endurance) despite large fluctuations in environmental conditions. Moreover, because they rely on different physiological performance traits, critical swimming and sprinting follow different patterns of change. This observation suggests the absence of a trade-off between these two swimming modes and introduces the possibly of independent selection trajectories.  相似文献   
52.

Questions

Rapid climate change in northern latitudes is expected to influence plant functional traits of the whole community (community-level traits) through species compositional changes and/or trait plasticity, limiting our ability to anticipate climate warming impacts on northern plant communities. We explored differences in plant community composition and community-level traits within and among four boreal peatland sites and determined whether intra- or interspecific variation drives community-level traits.

Location

Boreal biome of western North America.

Methods

We collected plant community composition and functional trait data along dominant topoedaphic and/or hydrologic gradients at four peatland sites spanning the latitudinal extent of the boreal biome of western North America. We characterized variability in community composition and community-level traits of understorey vascular and moss species both within (local-scale) and among sites (regional-scale).

Results

Against expectations, community-level traits of vascular plant and moss species were generally consistent among sites. Furthermore, interspecific variation was more important in explaining community-level trait variation than intraspecific variation. Within-site variation in both community-level traits and community composition was greater than among-site variation, suggesting that local environmental gradients (canopy density, organic layer thickness, etc.) may be more influential in determining plant community processes than regional-scale gradients.

Conclusions

Given the importance of interspecific variation to within-site shifts in community-level traits and greater variation of community composition within than among sites, we conclude that climate-induced shifts in understorey community composition may not have a strong influence on community-level traits in boreal peatlands unless local-scale environmental gradients are substantially altered.  相似文献   
53.
Since, in addition to its growth-promoting actions, insulin-like growth factor-I (IGF-I) has rapid vasoactive actions, we investigated the effects of IGF-I on whole-cell ATP-sensitive K+ (KATP) currents of rat mesenteric arterial smooth muscle cells. IGF-I (10 or 30 nM) reduced KATP currents activated by pinacidil or a membrane permeant cAMP analogue. Inhibition of phospholipase C, protein kinase C, protein kinase A, mitogen-activated protein kinase or mammalian target of rapamycin (mTOR) did not prevent the action of IGF-I. However, inhibition of KATP currents by IGF-I was abolished by the tyrosine kinase inhibitor genistein or the phosphoinositide 3-kinase inhibitors, LY 294002 and wortmannin. Intracellular application of either phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylinositol 3,4,5-trisphosphate (PIP3) increased the KATP current activated by pinacidil and abolished the inhibitory effect of IGF-I. Thus, we show regulation of arterial KATP channels by polyphosphoinositides and report for the first time that IGF-I inhibits these channels via a phosphoinositide 3-kinase-dependent pathway.  相似文献   
54.
Little is known about the behaviour patterns and swimming speed strategies of anadromous upriver migrating fish. We used electromyogram telemetry to estimate instantaneous swimming speeds for individual sockeye (Oncorhynchus nerka) and pink salmon (O. gorbuscha) during their spawning migrations through reaches which spanned a gradient in river hydraulic features in the Fraser River, British Columbia. Our main objectives were to describe patterns of individual-specific swim speeds and behaviours, identify swimming speed strategies and contrast these between sexes, species and reaches. Although mean swimming speeds did not differ between pink salmon (2.21 BL s–1) and sockeye salmon (1.60 BL s–1), sockeye salmon were over twice as variable (mean CV; 54.78) in swimming speeds as pink salmon (mean CV; 22.54). Using laboratory-derived criteria, we classified swimming speeds as sustained (<2.5 BL s–1), prolonged (2.5–3.2 BL s–1), or burst (>3.2 BL s–1). We found no differences between sexes or species in the proportion of total time swimming in these categories – sustained (0.76), prolonged (0.18), burst (0.06); numbers are based on species and sexes combined. Reaches with relatively complex hydraulics and fast surface currents had migrants with relatively high levels of swimming speed variation (e.g., high swimming speed CV, reduced proportions of sustained speeds, elevated proportions of burst speeds, and high rates of bursts) and high frequency of river crossings. We speculate that complex current patterns generated by river constrictions created confusing migration cues, which impeded a salmon's ability to locate appropriate pathways.  相似文献   
55.
Increased production and deposition of the 40-42-amino acid beta-amyloid peptide (Abeta) is believed to be central to the pathogenesis of Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP), but the mechanisms that regulate APP processing to produce Abeta are not fully understood. X11alpha (also known as munc-18-interacting protein-1 (Mint1)) is a neuronal adaptor protein that binds APP and modulates APP processing in transfected non-neuronal cells. To investigate the in vivo effect of X11alpha on Abeta production in the brain, we created transgenic mice that overexpress X11alpha and crossed these with transgenics harboring a familial Alzheimer's disease mutant APP that produces increased levels of Abeta (APPswe Tg2576 mice). Analyses of Abeta levels in the offspring generated from two separate X11alpha founder mice revealed a significant, approximate 20% decrease in Abeta(1-40) in double transgenic mice expressing APPswe/X11alpha compared with APPswe mice. At a key time point in Abeta plaque deposition (8 months old), the number of Abeta plaques was also deceased in APPswe/X11alpha mice. Thus, we report here the first demonstration that X11alpha inhibits Abeta production and deposition in vivo in the brain.  相似文献   
56.
57.
Threonine(668) (thr(668)) within the carboxy-terminus of the Alzheimer's disease amyloid precursor protein (APP) is a known in vivo phosphorylation site. Phosphorylation of APPthr(668) is believed to regulate APP function and metabolism. Thr(668) precedes a proline, which suggests that it is targeted for phosphorylation by proline-directed kinase(s). We have investigated the ability of four major neuronally active proline-directed kinases, cyclin dependent protein kinase-5, glycogen synthase kinase-3 beta, p42 mitogen-activated protein kinase and stress-activated protein kinase-1b, to phosphorylate APPthr(668) and report here that SAPK1b induces robust phosphorylation of this site both in vitro and in vivo. This finding provides a molecular framework to link cellular stresses with APP metabolism in both normal and disease states.  相似文献   
58.
Scaffold proteins have been established as important mediators of signal transduction specificity. The insulin receptor substrate (IRS) proteins represent a critical group of scaffold proteins that are required for signal transduction by the insulin receptor, including the activation of phosphatidylinositol 3 kinase. The c-Jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) represent a different group of scaffold molecules that are implicated in the regulation of the JNK. These two signaling pathways are functionally linked because JNK can phosphorylate IRS1 on the negative regulatory site Ser-307. Here we demonstrate the physical association of these signaling pathways using a proteomic approach that identified insulin-regulated complexes of JIPs together with IRS scaffold proteins. Studies using mice with JIP scaffold protein defects confirm that the JIP1 and JIP2 proteins are required for normal glucose homeostasis. Together, these observations demonstrate that JIP proteins can influence insulin-stimulated signal transduction mediated by IRS proteins.The c-Jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) are implicated in the regulation of the JNK signal transduction pathway (8, 28). The JIP1 and JIP2 proteins are structurally related with similar modular domains (SH3 and PTB) and binding sites for the mixed-lineage protein kinase (MLK) group of mitogen-activated protein kinase (MAPK) kinase kinases, the MAPK kinase MKK7, and JNK (19). These JIP proteins also interact with the microtubule motor protein kinesin, several guanine nucleotide exchange factors, the phosphatase MKP7, Src-related protein kinases, and AKT to form multifunctional protein complexes (19).One potential physiological role of JIP scaffold proteins is the response to metabolic stress, insulin resistance, and diabetes. Several lines of evidence support this hypothesis. First, JIP1 is required for metabolic stress-induced activation of JNK in white adipose tissue (12). Second, MLKs that interact with JIP proteins are implicated as essential components of a signaling pathway that mediates the effects of metabolic stress on JNK activation (13). Third, studies have demonstrated that the human Jip1 gene may contribute to the development of type 2 diabetes, because a Jip1 missense mutation was found to segregate with type 2 diabetes (26). Collectively, these data suggest that JIP proteins play a role in the cellular response to metabolic stress and the regulation of insulin resistance.It is established that the insulin receptor substrate (IRS) group of scaffold proteins plays a central role in insulin signaling (27). Treatment of cells with insulin causes tyrosine phosphorylation of the insulin receptor, the recruitment of IRS proteins to the insulin receptor, and the subsequent tyrosine phosphorylation of IRS proteins on multiple residues that act as docking sites for insulin-regulated signaling molecules, including phosphatidylinositol 3 kinase (27). Negative regulation of IRS proteins is implicated as a mechanism of insulin resistance and can be mediated by multiple pathways, including IRS protein phosphorylation and degradation. Thus, the mTOR/p70S6K (21, 22, 24) and the SOCS-1/3 (20) signaling pathways can regulate IRS protein degradation. Multisite phosphorylation on Ser/Thr residues can also regulate IRS protein function, including JNK phosphorylation of IRS1 on the inhibitory site Ser-307 that prevents recruitment of IRS1 to the activated insulin receptor (2).The IRS and JIP groups of scaffold proteins may function independently to regulate JNK-dependent and insulin-dependent signal transduction. However, functional connections between these scaffold proteins have been identified. Thus, studies using Jip1/ mice demonstrate that JIP1 is required for high-fat-diet-induced JNK activation in white adipose tissue, IRS1 phosphorylation on the inhibitory site Ser-307, and insulin resistance (12). These data suggest that JIP scaffold proteins function cooperatively with IRS proteins to regulate signal transduction by the insulin receptor. The purpose of this study was to examine cross talk between the JIP and IRS scaffold complexes. We demonstrate that the JIP and IRS scaffold complexes physically interact in an insulin-dependent manner and confirm that JIP proteins influence normal glucose homeostasis.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号