首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   133篇
  1263篇
  2024年   1篇
  2023年   8篇
  2022年   26篇
  2021年   38篇
  2020年   27篇
  2019年   31篇
  2018年   25篇
  2017年   38篇
  2016年   48篇
  2015年   65篇
  2014年   68篇
  2013年   100篇
  2012年   108篇
  2011年   96篇
  2010年   54篇
  2009年   46篇
  2008年   80篇
  2007年   57篇
  2006年   65篇
  2005年   52篇
  2004年   60篇
  2003年   45篇
  2002年   61篇
  2001年   3篇
  2000年   4篇
  1999年   10篇
  1998年   9篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有1263条查询结果,搜索用时 0 毫秒
991.
The Warburg effect describes how cancer cells down-regulate their aerobic respiration and preferentially use glycolysis to generate energy. To evaluate the link between hypoxia and Warburg effect, we studied mitochondrial electron transport, angiogenesis and glycolysis in pheochromocytomas induced by germ-line mutations in VHL, RET, NF1 and SDH genes. SDH and VHL gene mutations have been shown to lead to the activation of hypoxic response, even in normoxic conditions, a process now referred to as pseudohypoxia. We observed a decrease in electron transport protein expression and activity, associated with increased angiogenesis in SDH- and VHL-related, pseudohypoxic tumors, while stimulation of glycolysis was solely observed in VHL tumors. Moreover, microarray analyses revealed that expression of genes involved in these metabolic pathways is an efficient tool for classification of pheochromocytomas in accordance with the predisposition gene mutated. Our data suggest an unexpected association between pseudohypoxia and loss of p53, which leads to a distinct Warburg effect in VHL-related pheochromocytomas.  相似文献   
992.
We describe four children with a novel primary immunodeficiency consisting of specific natural-killer (NK) cell deficiency and susceptibility to viral diseases. One child developed an Epstein-Barr virus-driven lymphoproliferative disorder; two others developed severe respiratory illnesses of probable viral etiology. The four patients are related and belong to a large inbred kindred of Irish nomadic descent, which suggests autosomal recessive inheritance of this defect. A genomewide scan identified a single 12-Mb region on chromosome 8p11.23-q11.21 that was linked to this immunodeficiency (maximum LOD score 4.51). The mapping of the disease-causing genomic region paves the way for the identification of a novel pathway governing NK cell differentiation in humans.  相似文献   
993.
The tumor necrosis factor-alpha (TNF) converting enzyme (ADAM17) is a metalloprotease-disintegrin responsible for the cleavage of several biologically active transmembrane proteins. However, the substrate specificity of ADAM17 and the regulation of its shedding activity are still poorly understood. Here, we report that during its transport through the Golgi apparatus, ADAM17 is included in cholesterol-rich membrane microdomains (lipid rafts) where its prodomain is cleaved by furin. Consequently, ADAM17 shedding activity is sequestered in lipid rafts, which is confirmed by the fact that metalloproteinase inhibition increases the proportion of ADAM17 substrates (TNF and its receptors TNFR1 and TNFR2) in lipid rafts. Membrane cholesterol depletion increases the ADAM17-dependent shedding of these substrates demonstrating the importance of lipid rafts in the control of this process. Furthermore, ADAM17 substrates are present in different proportions in lipid rafts, suggesting that the entry of each of these substrates in these particular membrane microdomains is specifically regulated. Our data support the idea that one of the mechanisms regulating ADAM17 substrate cleavage involves protein partitioning in lipid rafts.  相似文献   
994.
Low molecular weight squash trypsin inhibitors from Sechium edule seeds   总被引:1,自引:0,他引:1  
Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively.  相似文献   
995.
High-dose cyclophosphamide (Cy) and G-CSF are widely used to mobilize hemopoietic stem cells for treating patients with high-dose chemotherapy and autologous stem cell transplantation (ASCT). Because lymphocyte count in the graft collected after Cy-G-CSF treatment is an independent survival factor after ASCT for patients with multiple myeloma, our purpose was to study how Cy-G-CSF treatment affects the phenotype and function of T cells in patients with multiple myeloma. Cy induced a 3-fold decrease of T cell counts with a slow and partial T cell recovery of one-third at the time of hemopoietic stem cell collection. Cy-G-CSF treatment did not affect the relative ratios of central memory, effector memory, and late effector CD4+ or CD8+ T cells, but a decrease in the percentage of naive CD4+ cells was observed. The percentages of CD25+ cells increased 2- to 3-fold in CD4+ and CD8+ T cells, the former including both activated CD25low and CD25high cells. CD4+CD25high cells were regulatory T cells (Treg) that expressed high levels of FOXP3, CTLA-4, and GITR and displayed in vitro suppressive properties. The recovery of Treg absolute counts after Cy-G-CSF treatment was higher than the recovery of other lymphocyte subpopulations. In conclusion, Cy-G-CSF treatment induces a severe T cell count decrease without deleting Treg, which are potent inhibitors of antitumor response. The present data encourage novel therapeutic strategies to improve T cell recovery following ASCT while limiting Treg expansion.  相似文献   
996.
The apelin receptor is a G protein-coupled receptor to which two ligand fragments, apelin-(65-77) and apelin-(42-77), can bind. To address the physiological significance of the existence of dual ligands for a single receptor, we first compared the ability of the apelin fragments to regulate intracellular effectors, to promote G protein coupling, and to desensitize the response in Chinese hamster ovary cells expressing the murine apelin receptor. We found that both apelin fragments inhibited adenylyl cyclase and increased the phosphorylation of ERK or Akt. Using stably transfected cells expressing a pertussis toxin-insensitive alpha(i) subunit, we demonstrated that each apelin fragment promoted coupling of the apelin receptor to either Galpha(i1) or Galpha(i2) but not to Galpha(i3). Although preincubation with each apelin fragment induced a desensitization at the level of the three effectors, preincubation with apelin-(42-77) also increased basal effector activity. In addition, a C-terminal deletion of the apelin receptor decreased the desensitization induced by apelin-(65-77) but did not alter the desensitization pattern induced by apelin-(42-77). Finally, in umbilical endothelial cells, which we have recently shown to express the apelin receptor, the Galpha(i1) and Galpha(i2) subunits are also expressed, ERK and Akt phosphorylation is desensitized after preincubation with apelin-(65-77), and basal levels of Akt phosphorylation are increased after preincubation with apelin-(42-77). In summary, apelin fragments regulate the same effectors, via the preferential coupling of the apelin receptor to G(i1) or G(i2), but they promote a differential desensitization pattern that may be central to their respective physiological roles.  相似文献   
997.
The key role of telluric microorganisms in pesticide degradation is well recognized but the possible relationships between the biodiversity of soil microbial communities and their functions still remain poorly documented. If microorganisms influence the fate of pesticides, pesticide application may reciprocally affect soil microorganisms. The objective of our work was to estimate the impact of 2,4-D application on the genetic structure of bacterial communities and the 2,4-D-degrading genetic potential in relation to 2,4-D mineralization. Experiments combined isotope measurements with molecular analyses. The impact of 2,4-D on soil bacterial populations was followed with ribosomal intergenic spacer analysis. The 2,4-D degrading genetic potential was estimated by real-time PCR targeted on tfdA sequences coding an enzyme specifically involved in 2,4-D mineralization. The genetic structure of bacterial communities was significantly modified in response to 2,4-D application, but only during the intense phase of 2,4-D biodegradation. This effect disappeared 7 days after the treatment. The 2,4-D degrading genetic potential increased rapidly following 2,4-D application. There was a concomitant increase between the tfdA copy number and the 14C microbial biomass. The maximum of tfdA sequences corresponded to the maximum rate of 2,4-D mineralization. In this soil, 2,4-D degrading microbial communities seem preferentially to use the tfd pathway to degrade 2,4-D.  相似文献   
998.
The impact of elevated atmospheric CO2 concentrations on the nitrogen cycle was evaluated in a 2-month experiment in monospecific grassland microcosms (Holcus lanatus L.) grown on reconstituted grassland soil. The responses of the N pools in the plants, soil, and soil microbes were studied. The impact of high CO2 on key stages of the N cycle, especially nitrification and denitrification processes, were also measured. Our study showed a strong plant response to high CO2: total biomass increased by 76% (P < 0.001) and root length density increased by 77% (P = 0.010). However, total plant N was not significantly modified by high CO2, because the percent N in the plant decreased by 40% (P < 0.001). We observed a large decrease in soil NO3 concentration under elevated CO2 (–50%; P = 0.002). Soil ammonium concentrations were much less affected by CO2 enrichment, and only in resin bags (–8%, P = 0.019). Soil nitrifying enzyme activity (NEA) had a tendency to increase (+17%; P = 0.061) and denitrifying enzyme activity (DEA) decreased (-12%; P = 0.013). We found evidence of increased microbial N sink (microbial N increased by 17%, P = 0.004). This and other studies suggest that rising CO2 often reduces soil nitrate concentrations, which may lead to decreased nitrate leaching. Elevated CO2 led to environmental conditions that were less favourable for denitrification in our study.  相似文献   
999.
Single-strand selective uracil–DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.  相似文献   
1000.
Astroglial release of molecules is thought to actively modulate neuronal activity, but the nature, release pathway, and cellular targets of these neuroactive molecules are still unclear. Pannexin 1, expressed by neurons and astrocytes, form nonselective large pore channels that mediate extracellular exchange of molecules. The functional relevance of these channels has been mostly studied in brain tissues, without considering their specific role in different cell types, or in neurons. Thus, our knowledge of astroglial pannexin 1 regulation and its control of neuronal activity remains very limited, largely due to the lack of tools targeting these channels in a cell-specific way. We here show that astroglial pannexin 1 expression in mice is developmentally regulated and that its activation is activity-dependent. Using astrocyte-specific molecular tools, we found that astroglial-specific pannexin 1 channel activation, in contrast to pannexin 1 activation in all cell types, selectively and negatively regulates hippocampal networks, with their disruption inducing a drastic switch from bursts to paroxysmal activity. This decrease in neuronal excitability occurs via an unconventional astroglial mechanism whereby pannexin 1 channel activity drives purinergic signaling-mediated regulation of hyperpolarisation-activated cyclic nucleotide (HCN)-gated channels. Our findings suggest that astroglial pannexin 1 channel activation serves as a negative feedback mechanism crucial for the inhibition of hippocampal neuronal networks.

Astrocytes have mostly been shown to boost neuronal activity. This study reveals that activity-dependent activation of astroglial pannexin 1 channels inhibits hippocampal neuronal networks by decreasing neuronal excitability via purinergic signaling, uncovering a novel astroglial negative feedback loop mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号