首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   60篇
  2022年   11篇
  2021年   13篇
  2020年   12篇
  2018年   7篇
  2016年   13篇
  2015年   11篇
  2014年   24篇
  2013年   37篇
  2012年   24篇
  2011年   28篇
  2010年   24篇
  2009年   25篇
  2008年   22篇
  2007年   33篇
  2006年   27篇
  2005年   33篇
  2004年   34篇
  2003年   32篇
  2002年   27篇
  2001年   14篇
  2000年   8篇
  1999年   11篇
  1998年   10篇
  1997年   13篇
  1996年   7篇
  1995年   7篇
  1994年   11篇
  1992年   14篇
  1991年   7篇
  1990年   11篇
  1989年   7篇
  1988年   5篇
  1987年   10篇
  1986年   6篇
  1985年   11篇
  1984年   13篇
  1983年   7篇
  1982年   16篇
  1981年   6篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1977年   7篇
  1975年   5篇
  1974年   6篇
  1973年   4篇
  1972年   3篇
  1970年   3篇
  1969年   3篇
  1957年   4篇
排序方式: 共有721条查询结果,搜索用时 15 毫秒
81.
Rex G. Cates 《Oecologia》1980,46(1):22-31
Summary Leaf tissue preferences of monophagous, oligophagous, and polyphagous insect herbivores were determined using young and mature leaf tissue abundances and herbivore feeding observations. Larvae of monophagous and oligophagous herbivores preferred young leaf tissues while, overall, larvae of polyphagous species preferred mature leaves of their various host plants. Even though a species is often polyphagous over its geographical range, larvae from local populations may be very specialized in their diet. When this occurs these specialized larvae prefer the more nutritious and perhaps more toxic young leaves of some of their host plants. Resource abundance and plant chemistry are discussed as major factors influencing herbivore feeding patterns.  相似文献   
82.
Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is an attractive target for small molecule drug discovery. Herein, we report the discovery of a structurally diverse series of carbon-linked quinoline triazolopyridinones, which demonstrates nanomolar inhibition of c-Met kinase activity. This novel series of inhibitors exhibits favorable pharmacokinetics as well as potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver pharmacodynamic model.  相似文献   
83.
Iron has outstanding biological importance as it is required for a wide variety of essential cellular processes and, as such, is a vital nutrient. The element holds this central position by virtue of its facile redox chemistry and the high affinity of both redox states (iron II and iron III) for oxygen. These same properties also render iron toxic when its redox-active chelatable 'labile' form exceeds the normal binding capacity of the cell. Indeed, in contrast to iron bound to proteins, the intracellular labile iron (LI) can be potentially toxic especially in the presence of reactive oxygen species (ROS), as it can lead to catalytic formation of oxygen-derived free radicals such as hydroxyl radical that ultimately overwhelm the cellular antioxidant defense mechanisms and lead to cell damage. While intracellular iron homeostasis and body iron balance are tightly regulated to minimise the presence of potentially toxic LI, under conditions of oxidative stress and certain pathologies, iron homeostasis is severely altered. This alteration manifests itself in several ways, one of which is an increase in the intracellular level of potentially harmful LI. For example acute exposure of skin cells to ultraviolet A (UVA, 320-400 nm), the oxidising component of sunlight provokes an immediate increase in the available pool of intracellular LI that appears to play a key role in the increased susceptibility of skin cells to UVA-mediated oxidative membrane damage and necrotic cell death. The main purpose of this overview is to bring together some of the new findings related to intracellular LI distribution and trafficking under physiological and patho-physiological conditions as well as to discuss mechanisms and consequences of oxidant-induced alterations in the intracellular pool of LI, as exemplified by UVA radiation.  相似文献   
84.
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exerts protective effects during myocardial ischemia/reperfusion injury. We hypothesized that elevated MIF levels in the early postoperative time course might be inversely associated with postoperative organ dysfunction as assessed by the simplified acute physiology score (SAPS) II and sequential organ failure assessment (SOFA) score in patients after cardiac surgery. A total of 52 cardiac surgical patients (mean age [± SD] 67 ± 10 years; EuroScore: 7) were enrolled in this monocenter, prospective observational study. Serum levels of MIF and clinical data were obtained after induction of anesthesia, at admission to the intensive care unit (ICU), 4 h after admission and at the first and second postoperative day. To characterize the magnitude of MIF release, we compared blood levels of samples from cardiac surgical patients with those obtained from healthy volunteers. We assessed patient outcomes using the SAPS II at postoperative d 1 and SOFA score for the first 3 d of the eventual ICU stay. Compared to healthy volunteers, patients had already exhibited elevated MIF levels prior to surgery (64 ± 50 versus 13 ± 17 ng/mL; p < 0.05). At admission to the ICU, MIF levels reached peak values (107 ± 95 ng/mL; p < 0.01 versus baseline) that decreased throughout the observation period and had already reached preoperative values 4 h later. Postoperative MIF values were inversely correlated with SAPS II and SOFA scores during the early postoperative stay. Moreover, MIF values on postoperative d 1 were related to the calculated cardiac power index (r = 0.420, p < 0.05). Elevated postoperative MIF levels are inversely correlated with organ dysfunction in patients after cardiac surgery.  相似文献   
85.
86.
c-Met is a receptor tyrosine kinase often deregulated in human cancers, thus making it an attractive drug target. One mechanism by which c-Met deregulation leads to cancer is through gain-of-function mutations. Therefore, small molecules capable of targeting these mutations could offer therapeutic benefits for affected patients. SU11274 was recently described and reported to inhibit the activity of the wild-type and some mutant forms of c-Met, whereas other mutants are resistant to inhibition. We identified a novel series of c-Met small molecule inhibitors that are active against multiple mutants previously identified in hereditary papillary renal cell carcinoma patients. AM7 is active against wild-type c-Met as well as several mutants, inhibits c-Met-mediated signaling in MKN-45 and U-87 MG cells, and inhibits tumor growth in these two models grown as xenografts. The crystal structures of AM7 and SU11274 bound to unphosphorylated c-Met have been determined. The AM7 structure reveals a novel binding mode compared with other published c-Met inhibitors and SU11274. The molecule binds the kinase linker and then extends into a new hydrophobic binding site. This binding site is created by a significant movement of the C-helix and so represents an inactive conformation of the c-Met kinase. Thus, our results demonstrate that it is possible to identify and design inhibitors that will likely be active against mutants found in different cancers.  相似文献   
87.
Endorepellin, the C-terminal module of perlecan, has angiostatic activity. Here we provide definitive genetic and biochemical evidence that the functional endorepellin receptor is the alpha2beta1 integrin. Notably, the specific endorepellin binding to the receptor was cation-independent and was mediated by the alpha2 I domain. We show that the anti-angiogenic effects of endorepellin cannot occur in the absence of alpha2beta1. Microvascular endothelial cells from alpha2beta1(-/-) mice, but not those isolated from either wild-type or alpha1beta1(-/-) mice, did not respond to endorepellin. Moreover, syngeneic Lewis lung carcinoma xenografts in alpha2beta1(-/-) mice failed to respond to systemic delivery of endorepellin. In contrast, endorepellin inhibited tumor growth and angiogenesis in the wild-type mice expressing integrin alpha2beta1. We conclude that the angiostatic effects of endorepellin in vivo are mediated by a specific interaction of endorepellin with the alpha2beta1 integrin receptor.  相似文献   
88.
89.
During light organ colonization of the squid Euprymna scolopes by Vibrio fischeri, host-derived mucus provides a surface upon which environmental V. fischeri forms a biofilm and aggregates prior to colonization. In this study we defined the temporal and spatial characteristics of this process. Although permanent colonization is specific to certain strains of V. fischeri, confocal microscopy analyses revealed that light organ crypt spaces took up nonspecific bacteria and particles that were less than 2 μm in diameter during the first hour after hatching. However, within 2 h after inoculation, these cells or particles were not detectable, and further entry by nonspecific bacteria or particles appeared to be blocked. Exposure to environmental gram-negative or -positive bacteria or bacterial peptidoglycan caused the cells of the organ's superficial ciliated epithelium to release dense mucin stores at 1 to 2 h after hatching that were used to form the substrate upon which V. fischeri formed a biofilm and aggregated. Whereas the uncolonized organ surface continued to shed mucus, within 48 h of symbiont colonization mucus shedding ceased and the formation of bacterial aggregations was no longer observed. Eliminating the symbiont from the crypts with antibiotics restored the ability of the ciliated fields to secrete mucus and aggregate bacteria. While colonization by V. fischeri inhibited mucus secretion by the surface epithelium, secretion of host-derived mucus was induced in the crypt spaces. Together, these data indicate that although initiation of mucus secretion from the superficial epithelium is nonspecific, the inhibition of mucus secretion in these cells and the concomitant induction of secretion in the crypt cells are specific to natural colonization by V. fischeri.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号